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1. Introduction 

1. I. BACKGROUND 

In 1978 Witten [22] showed that there is a one to one correspondence be- 
tween solutions to the N = 3 Supersymmetric Yang-Mills (SSYM) equations 
on complex Minkowski space and certain holomorphic vector bundles over a 
specific supermanifold, the space qfsuper light NZJJ.S. This result is in the spirit of 
Roger Penrose’s Twistor theory: Analysis on one space is replaced by complex 
geometry on another, albeit in this case a superspace. The main result of the 
present paper is an extension of this result to complex conformal spacetimes 
with general curvature. 

The original Ward Correspondence was produced by Richard Ward [20] in 
1977, relating instantons on a self-dual complex conformal spacetime to certain 
vector bundles over its twistor space. (Self-duality refers to a restriction on the 
curvature of the spacetime, which actually ensures the existence of a twistor 
space.) This result led to a complete classification of instantons on S4, since the 
corresponding vector bundles over its twistor space, @P3, could be studied using 
techniques from algebraic geometry. 

Shortly after, Isenberg, Yasskin and Green [ 81, and also independently Wit- 
ten [ 221, produced a Generalized Ward Correspondence for the full Yang-Mills 
equation on Minkowski space. Solutions here correspond to certain vector bun- 
dles on the third infinitesimal neighborhood of the space of null geodesics em- 
bedded in @Ps x @P3. Finally, in 1986, LeBrun [ 121 extended this result to 
“self-dual” complex conformal spacetimes. 

The present work relies in no small part on LeBrun’s result [ 131 that ambitwis- 
tor spaces may always be thickened up to order 4. If the Bach tensor vanishes, it 
may be thickened up to order 5, and if the Eastwood-Dighton tensor vanishes, 
up to order 6. This result was in turn based upon the linear version given by 
Baston and Mason [ 11. A linear version was also given in the supersymmetric 
setting by Chau and Lim [ 5 1. The role of the Bach tensor as a Yang-Mills current 
was originally discovered by Merkulov [ 16 1. 

This work is contained in the author’s doctoral dissertation, which was sub- 
mitted to the Department of Mathematics, SUNY at Stony Brook in partial 
fulfillment of the requirements for the Ph.D. degree. Thanks are due to Claude 
R. LeBrun for his constant encouragement and guidance. 



I .2. SUPERMANIFOLDS 

Let us recall the definitions of superalgebras and supermanifolds. A superal- 
gebra or Zl-graded commutative algebra is an algebra in which every element 
can be written as a sum of an everz element and an odd element. Even elements 
commute with all elements in the algebra and odd elements anticommute with 
odd elements. 

A complex supermanifold is a pair (X, A ) where X is a complex manifold and 
4 is a sheaf of El-graded algebras over @ which is locally isomorphic to AL CJ@“‘. 
We also require that globally A/N Z 0 and that N/IV’ is a locally free sheaf 
of O-modules. Locally, sections of .4 on a coordinate neighborhood CT will have 
the form: 

g = ~wll> 

where gI = g, (z’, z2,. . . , 2) E c3( U) and I/‘, . . . ,I/“~ are linearly independent 
sections of CPtn. The z’, . . . , z” and ?I’ , . . . , q”’ are referred to respectively as the 
even and odd complex coordinates.The Z2-grading on A is represented locally 
by: g is even if 

g = c sd 
(II even 

and g is odd if 
s = c m’. 

III odd 

Note that a change of coordinates is required to preserve the Z2-grading. 
One defines super vector bundles as locally free sheaves of d-modules and 

the super-tangent bundle as the sheaf of derivations of superfunctions over @. 
The supertangent bundle is then a supervector bundle. One may extend many of 
the ideas of differential geometry, such as differential forms, and the Frobenius 
theorem, to supergeometry. (We refer the reader to Kostant [ lo] .) 

2. Superconformal manifolds 

2. I. SUPERCONFORMAL STRUCTURES 

A superconformal structure on a 4 4N supermanifold is defined by the exis- 
210 tence of super-vector bundles S, , _ , S2’ II E”lN and the exact sequence 

O+T,M@T,M+TM-tToM-0, 

where we have isomorphisms 

TIMsS,@E, T,M 2 S-BE’, TOM ? S+ @Se. 

TIM and T,M are required to be integrable distributions and the Frobenius form 

@ : T/M@ T,M- TOM, 
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where 
@((x8 Y) = [X,Y] mod (FM@ T,M) 

is required to coincide via the above isomorphisms with the convolution: 

S,@EEE*@SS_-+S,C%SS-. 

The Frobenius form is then said to be nondegenerate. (These are the only cur- 
vature conditions necessary to construct the space of super light rays.) 

We refer the reader to Manin [ 15, pp. 277,278] for the definition of an N = 1 
superconformal structure for which the above definition for any N is a simple 
generalization. The N = 1 definition is based on the work of Ogievetskii and 
Sokachev [ 181. Merkulov [ 171 has also generalized this definition to the case 
of N-extended paraconformal supermanifolds. 

Since T/M and T,M are integrable distributions we may define 

MI = (Mrd,Ker(T,M)), Mr = (Mrd, Ker(FM) 1. 

We then have the double fibration M --t Ml,,. The local coordinates );p, Pi 
and x;, 8; on Al/ and n!fr respectively pullback to functions on M. Define the 
functions 

,p = xp + s,” sp - x,” 
2 ’ 

Ha=7. 

Take .ya, Pi, 07 as local coordinates on Al. Note that the functions H“ are nilpo- 
tent since (sp )rd = (x,” )rd = $,. Also define the functions 

The derivations 

then form a local basis for T/M and T,M respectively and the one-forms 

0” = ddya - d@Xjj - de!,!’ 
J B 

form a local basis for Szd M. (See Manin [ 15, p. 28 I]. ) 
The space of super light vectors, C, is defined as a submanifold of G?d’M: 

C = {v E @M 1 v = s+ @IS-,s+ E S&s- ES’}. 

(Here, ’ denotes removal of the zero section.) Let (s’, fPj, eq,c,) be local co- 
ordinates on f2d’M where a local section of .Qd’&f over M is given by taoa. 
On .Qd’n!, &YIJ* is a canonical one-form. d (&Y) is called the standard pre- 
symplectic form on L$’ M. We proceed with a pre-svmplectic reduction on .Qd’M 
to construct our space of super light rays for M414N. 
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2.2. THE KERNEL OF THE PRE-SYMPLECTIC FORM 

Denote the isomorphism T/M Z S+ ~3 E by 

S,’ Sej = &$9pk, 

the isomorphism T,M Z S- ~3 E’ by 

S; 8 ej = fi/$ 

and the isomorphism Tpl4 E S+ @ S- by 

s,’ $3 s& = h:, a/axb . 

The condition that the Frobenius form coincides with convolution via these 
isomorphisms is that: 

i.e., 

where 
[qai,q$] = cD$~& mod (T/M@ T,M). 

It is a straightforward calculation, using the definitions of qai and X$ , to show 
that 

a 
[9ai,4j?kl = (4/?jxzi + 9/3jx~i)~ = O- 

Similarly,we have 

[q;,q;] = (qbX2 + q-!Xf)& = 0. 

The pre-symplectic form d& A oa + {a A do” is then 

dTa A 0’ + r, A (deP’ A dx~j + deB A dX~‘) 

= dm A 00 - <,deSj A Ocaxjjjaxc - rdef A wcaxylaxc 

-<adO” Ad6,P(gpjXik + q$Xjj) 

- {ade’j A deyk (qajXfk + qykX~j) - code,8 A dei(qiXpk + q!X;). 

The last two terms are zero and the fourth is -deflj A de$O$j<, . So we have 
altogether for the pre-symplectic form: 

axij 
d (<au”) = d<a A ma - de” A ma<c- 

axa 

deai A deba& .r 
k PPJ a’ 
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Pull this form back to 

(where ~00 = et1 = 0 and co1 = -e’O = 1 and similarly for E&S), so as to find 
the kernel of the pre-symplectic form restricted to Z . 

Let Do/ = g!Fek and 06 = f:fqj . Also let cflr; = Iz~;~<, . We claim that the 

vector fields 

are in the kernel of d (&o’) . This calculation will be left to the reader. 
We must show that Q, and Q’ are tangent to the space of super light vectors, 

C, i.e. that 

To show this is zero, consider the quantity 

We claim that Rtlyi, = -R!,gi and thus R‘& = Rld;~,,~ This follows from the 
Bianchi identity: 

(we do not sum over I) 



But J;i@f?‘,, = ~&$(l(h~~,, so we obtain 

0 = (Rt,,,; + &i,, 1 d/8sd. 
Thus R&; = -R;,O; . 

Now 

Q, (&,,;~,,,Pdii) 

= 2Ea”r,,R~,l,,;ljlj~E~“ej11;5b 

- 2~““i,,g~~(q~~g~;“)g;;;,~~~‘h~;~,,~~~”’~~’~~~, 

= 2E0”~,-&,;Eo,,E~” 9 <,,<b 

- 2Ey,,g~; (qpkg;;“) ,y ~&,j’E~“‘E~i 

= 2t”“FiilR);Ilro,ll~~~~o 

- 2Fy&$; (qfikg;;n) g-In’ ytn llaVi, ~~,~Vj,E~“‘E~” = 0 ) 

since epKqKq P’= Eibv,vI, = 0 and where we have written ch.i = q,vi for some 
spinor fields qK and ok. 

There is a similiar result for Q’ and hence [ Ql, Q’ ] is also tangent to C . In addi- 
tion, [Q,, Q’] is in the kernel of d (&,w”) 1~ since the kernel of a closed two-form 
is closed under Lie brackets. We claim that the set {Q’, Q,, P = ‘& [Qk, Q”]} 
forms a basis for ker(d(<,@)]_r) and thus that this kernel has rank 1]2N. 

Now 
rank(ker(d(5,0n)]z)) I rank(ker({d(r,w”)lc},d)), 

where {d (&wa)},d is the reduction composed with d (&o”)/,r and takes sections 
of TC to sections of (B’c),d . 

We have 

{d (<aOu)}rd = d<, A dxa + d@j A e@$;j< cl 

= d& A dxa + Dak A D$j&, 

where D”” and Di are dual to Duk and Di . Now 

(Tc),d = (Toz’)rd @ (n*T&f@ n*TrnJ),d, 

where or is the natural projection to M and our biIinear form is actually a 
direct sum of two bilinear forms, the two terms just written above. The first 
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term has kernel of rank 1, while the second has kernel of rank 2N. Thus 
rank(ker(d(&o’)I_r)) 5 112N. Since 

for some quantity Aa, we have that this rank is actually equal to 112N. 
Ker(d(&o”)lc) is then a distribution. It is also an integrable distribution 
since, as stated before, the kernel of a closed two-form is closed under Lie 
brackets. The space of super light rays will be constructed from the leaf space of 
this distribution. It will therefore be useful to inquire into this in the following 
section. 

2.3. A LEMMA ON LEAF SPACES FOR SUPERMANIFOLDS 

Let Vn-pl”l-q be an integrable distribution on a complex supermanifold, Ynl’n. 
The reduction of 2) splits into an even and an odd part: 

Drd = DDrdO@vrd’, 

2) ,.d 0 is an integrable distribution on Yrd. Assume that the leaf space of Vrd ,-, iS a 
complex manifold, X,Pd, and thus that we have a holomorphic map Prd : Y,.d --) 
Xrd whose fibres are the kaVeS of Vrd 0. We wish to examine some sufficient con- 
ditions under which prd extends to a map, p, onto some complex supermanifold, 
X, such that the fibres of p are the leaves of 2). 

Let t3 = &d+ (ker V), the push down of the sheaf of super-functions on Y, 
which are annihilated by 2). Of course, pyd’B = kerV. We will show that under 
appropriate conditions, X = (,Yrd, B) is the complex supermanifold that we 
seek and thus that the canonical identification p,;‘B = kerV defines our map 
p between supermanifolds. 

We need to show that f? is isomorphic locally to r\‘OT,T. It is sufficient there- 
fore to assume ,y,.d is a contractable Stein domain and thus that Y has a covering 
by Frobenius charts, {U,,}, such that the even coordinates satisfy x,,d = ,yp rd. 
We wish to show on this Y that p;’ f3 is globally isomorphic to A*p;’ C?$,T. This 
will give the local splitting of B on X. 

We first observe that on Y, p;’ B and l\* p,d’ OF,: are already locally isomor- 
phic. Indeed, this is clear if one restricts oneself to a Frobenius chart where 
we have local coordinates x0, t?j,yb, 4” such that V is spanned by d/dJlb and 
a/a@“. Any change of coordinates on an overlap of two Frobenius charts is 
an automorphism of A’ p;’ OT,:, as a &-graded algebra, which leaves fixed 

P,;' ox,, c A’p,d’ OFr;. (Note that we have a covering such that xzrrd = *yjrd.) 
Let A denote the sheaf of all such automorphisms. p;‘B is then given by an ele- 
ment, r, of the point set Hi (Y,.d, A). We wish to examine the structure of p,d’B 

order by order. Let Nil denote here the subsheaf of nilpotents of l\‘p,d’ O,:,:. 
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Let d(j) denote the sheaf of automorphisms of (l\‘p;‘0~,~)/(Nil)j+ which 
preserve p,;’ 0,~,, . We have A = d(q) and a natural map A(” -, d(j) for I > j. 
We have the exact sequences for j 2 1, 

0 -t c(j) + A”’ + A”-” + 0. 

The structures of C(j) have been given by Batchelor [ 2 1. (See also Eastwood and 
LeBrun [ 6 1. ) They are 

C(I) = A(” = GL(q,p,‘C3xr,), 

C(j) = Der ( p,d’ (3~rr;, ) 8 A’pG’ 0:: for j even, 

C(j) = Hom(p;‘C3,:,:, A ‘p;‘OTz) for j odd, # 1. 

Let T(,’ be the image of T under the natural map 

H’(Y,d,d) + H’(Y,d,d(‘)) = H*(Y,~,GL(~,P,~‘C?S,~)). 

This represents a vector bundle on Yrd and one can check that it is also given by 
( ( TY )rd ,/V,, , )*. We assume for now that this is a trivial bundle, i.e. t(’ ’ = 1. 

We now apply the machinery in Eastwood and LeBrun [ 6 ] of non-abelian 
sheaf cohomology to each of the exact sequences written before so as to examine 
the structure of p;’ U order by order. Assuming inductively that the preceding 
order gave a trivial structure, i.e. r(j- 1 ’ = 1, This structure is given by 

H’ (Yrd, Der(P,d’o,v,, )@A’p,d’0;$ ) for j even, 

H’(Y,d,Hom(p~‘O,~,~,/\ ‘p;‘OFz) for j odd, # 1. 

These sheaves are inverse images of vector bundles over Xrd. By a theorem of 
Buchdahl [ 31, these groups are zero if we assume H’ (p;’ (X ), @) = 0 for all 
x E &d. 

We had assumed before that the vector bundle coming from the first order 
structure was trivial. Let us justify this. One can check that the vector bundle, E, 
on Yrd given by r( l ’ when restricted to leaves is equipped with a flat connection. 
This is because sections of p,d’ c3xr, are constant on leaves. Assuming that the 
leaves are simply connected eliminates any holonomy and thus E is the trivial 
bundle when restricted to a leaf. 

Restrict now to a trivializing Frobenius chart, U,, on Yrd where E Z U, x @q. 
Let (.P,.v~,u~) be local coordinates for EIc,, with (2 = O,yb = 0) E U,. 
Let W c Xrd be a neighborhood such that 0 E W and W c &d (U,). For all 
xa E W and uo E @q there is a unique global section, V (x”, yb), of EIPrii cs,, ), 

with V, (xa, 0) = ~0. This global section is actually constant when restricted to 
a leaf. Thus V, (9, yb ) = uo and we see that V (P, yb ) is analytic in x0. (Recall 
that all of our transition functions for E are analytic in x”.) Hence V is a global 
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holomorphic section of EIPr;l (u’). Choosing q linearly independent ~6 will give q 

linearly independent holomorphic sections Yj of EIP,;, (n,), which we conclude 
is trivial. 

We thus obtain that p,d’ I3 is globally isomorphic to A’P;’ 0;,1 over W. 

Lemma 2.1. Let V be an integrable distribution on a complex supermanifold, Y. 
Assume that the leaves of Vrd 0 are simply connected and that the leafspace ofV,d 0 
is a CO?npkS manifold, Xrd. The leaf space of 2) is then a complex supermanifold, 
X. 

2.4. THE SPACE OF SUPER LIGHT RAYS 

We now proceed, almost verbatim, along the lines of LeBnm [ 111, to define 
the space of super light rays and to show it has a natural contact structure. 
Let q5 = d (<aoa)]z. We suppose that the foliation of the distribution ker($) 
satisfies the conditions necessary for its leaf space to be a complex supermanifold. 
(We, for example, can assume that the null geodesics of the reduced conformal 
spacetime are simply connected and thus apply lemma 2.1.) Let p : Z + F 
denote projection; then there is a two-form 4 E r (.Q2F) such that p*$ = 4. 
This is true since for v E ker($), L,$ = w LI d4 + d(w u 4) = 0. (Here, 
u denotes contraction.) Also d$ = 0 since p*d$ = d$ = 0 and p being a 
projection, p* : Q ‘F + Q1 .Z is injective. Note that since rank($) = rank( uq5), 
U$:TF- T’F is an isomorphism (det4jk # 0, j,k = l,..., 6 + 2N). 

There is a @,-action on Qd M given by scalar multiplication ( c c A = sheaf 
of superfunctions), 

mt : (~a, B@j, ef,r,) H (~0, eaj, 8j, tta) . 

We have /n;q!~ = tq3, so for v E ker$, 

c#lum,*v = m;(buv = tcpuv = 0. 

m,, is clearly injective, so ml, ker 4 = ker 4 and leaves are taken unto leaves by 
1121. 

We can then define N = F/C, to be our space of super light rays. Define L = 
F x c/c*; we have then F = L’ - {zero section}. F has a standard @,-invariant 
vector field X along the fibers. We define our contact form 8 E I’ (a ’ (L) ) by 
A*8 = X u $I where 1: F + N and VZ; (X u 4) = tX u 4. We have for o a local 
section of F -, N an identification of 0 with g* (X U i), 

a*(Xuc$) A (d(o*(Xu@‘2+N)) = ~*(Xuq?Ad(Xucj)“‘+N) 
= a’(Xuqb (Lx& *2+N) = CT* (X u ((p’“) ) 

since 
d- - 

Lx$ = dt(e’4)ll=0 = 4. 



But 
$ -A3+N(X,,.. *,X6+/V) # 0 

for any local basis Xi,. . . , X6+, of TF, so X u JA3+* # 0 and X is transverse 
to the image of 0 so that (T* (X u c$“~+~) # 0. Thus 0 A (de)“‘+v # 0 and 8 is 
a contact one-form on N. 

3. The space of normal quadrics 

3.1. SOME RIGIDITY LEMMAS 

In this section we present several lemmas that will be very useful when we 
start to deform normal quadrics. These lemmas are well known in the literature 
on deformation theory. See, for example, Burns [4, p. 1381. 

Lemma 3.1. Let & + X x U be a vector bundle, where U is an open polsdisk 
in C” and X is a compact complex manifold. Let E,, = &l,~,~,,) and assume 
H’ (X, E,,, @E& ) = 0 for a given uo. There then exists a neighborhood of ug, U’, 
such that E,, S E,,, for all u E U’. In other words, &ILV s pr’ E,,, where pr is the 
projection X x U Z X. 

The above theorem may also be shown in a particular supersymmetric case. 

Lemma 3.2. Let & 5 X x U be a super vector bundle over a supermanifold. We 
assume here that U is a super polydisk in @“llq, i.e. U = (U,.d, r\‘O$ ), where 
U$ is a polvdisk in Cm. We also assume that X is purely even (no odd coordinates) 
and that X. x U = (X x Urd,d = A’OF”,“,,) . Let E,,, = &lxx,,, and assume 
H’ (A’, E,,, @ E;,) = 0. There then exists a (super)neighborhood of ug, U’ c U, 
such that &IL,! s pr* E,,, where pr is the projection X x U 2 X, 

To prove this, first apply lemma 3.1 to E + X x Urd. Since & = pr* E,,, for 
U small enough, and H’ (X, E,,, ~8 E& ) = 0 we have H’ (& @ &,!d ) = 0. Now 
consider the machinery of Griffiths obstructions given by Eastwood and LeBrun 
[2]. These are the obstructions to extending E].Y~“,~ to all of X x U. Also, if 
such an extension exists, one may also measure its possible uniqueness. It is the 
second question which we are of course interested in. The machinery proceeds 
as follows. 

On X x Urd there is the following exact sequence of sheaves: 

0 + (A’O@) @A!,,, “2 GL(r,d/(Nil)j+‘) + GL(r,d/(Nil)j) + 0, 

where M,, r may be taken to be @‘*. Isomorphism classes of super vector bundles 
are given by H’ (GL(r, A) ) . The associated exact sequence of first cohomology 
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for the above exact sequence of sheaves is 

H1((r\‘C?~4)‘.‘~Erd~~:d) -H’(GL(~,d/(Nil)j”)) -H’(GL(r,d)). 

The uniqueness of extension at each level of nilpotency is thus given by 

H’ (@(‘)‘* @ Erd @ &;d) . 

But as stated before, H’ (Erd @&Td ) = 0 so that all the obstructions to uniqueness 
vanish. 

3.2. DEFORMING SUBMANIFOLDS OF SUPERMANIFOLDS 

In this subsection we show how a rigid classical submanifold .Xrlo of a super- 
manifold Y,ll”l may be deformed through a family of submanifolds each with the 
same normal bundle as X’l”. This argument is a simplified version of LeBrun’s 
work [ 141, which deforms a (not necessarily rigid) classical submanifold of a 
complex supermanifold. The more general work of deforming submanifolds X’lp 
in Y”l”’ has been done by Weintrob [ 2 I]. 

Let X c Y be a compact complex submanifold of a complex manifold, and let 
(Y, A) be a complex supermanifold. Let Z c A be the nilradical (i.e. the ideal of 
nilpotents) and let E be the bundle on Y defined implicitly by 0(E*) = 2/Z*. 
The normal bundle v of X c (Y, A) is by definition the graded bundle v = 
vo @vi, where vo = (rY],v)/rX, and vI = E1.y. 

Theorem 3.3 (LeBrun). Suppose that 

H’(X,O(TX)) = H’(X,U(V)) = H’(X,U(vw*)) = 0. 

Then there is a “complete, locally trivial, analytic family of submanifolds neat 
X, biholomorphic to X and with normal bundle v “, whose tangent space at X 
is Ho (X, c3 (v ) ) . More precise1.v there is a complex supermanifild ( W, I3) of 
comples bidimensiorz (ho (X, c? ( vo ) ) 1 ho (X, 0 (v, ) ) ) , a submersive proper epi- 
morphism 

7r : (S,C) + (W,B) 
which is a fibering of complex supermanifolds, and a map of complex superman- 
ifolds 

p : t&C) --t (Y,d) 
which is an embedding of z-’ (t) GZ X into Y with normal bundle vr = v for all 
t E W, such that X = p(7c-1 (x)) for some x E W and such that the induced 
maps 

TyW --t H”LKUbo)), Fs -+ H’(X,O(v,)) 
are isomorphisms. Thus we assert the e,xistence of a manifold z = (Z, t3) of 
bidimension (ho ( TY/ TX ) 1 ho (E) ) , a supermanifold F = (F, C ) of bidimension 
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(ho (TYITX) + rjh” (E) ) , where r = dim X, and a mapping diagram 

F 

3; 
P z 

such that for some basepoint zo E Z one has X = &~cY;’ (~0). F is a fibre 
bundle over z, with jibres X, such that theJibres embed into 7 under /I with 
normal bundle ut S v for all t E z. Moreover, this family is universal in the 
sense that any diagram 

4 
J1 

P 271 
is induced by a map Z1 + Z in some neighborhood of the base point. 

ProojI We begin by noticing that H1 (X, T Y/ TX) = 0 by hypothesis, so we may 
apply Kodaira’s theorem [ 91. This gives us a reduced family 

F 

z 
Y z. 

Since H1 (X, TX) = 0 by hypothesis and the statement is local, let us assume 
F = X x Z where Z is a polydisk in @O(w). Since HI (X, Y 8 V* ) = 0, we have 

H’(X,V~@V;) = H’(X,zq WY;) = 0. 

Thus, by lemma 3.1 of the previous section, b* E E pr* vl and b’ TY/TX G 
pr* vo (i.e. the image of a fiber X x {z} in Y has normal bundle ~0). 

Let II?‘* t Z be the vector bundle given by 

O(B*) = at(Cl(b*E)) g O~ho’ul) 

by the Kunneth formula. Let B = O(l\‘I?) and C = Cl(l\‘a*A) . The natural 
pull back map 

a-‘o(A*j$) + O(a*A*&) S /j*@ho(ul) 

thendefinesamapa:F+z,whereF= (F,C)andZ= (Z,B).Wenow 
need to define a map p : F + F, i.e. a homomorphism p* : b-IA + C. We 
build this in the following inductive way: let N c C be the nilradical, and let 
d”) = CfN m+ ‘. We then have the exact sequence of algebra homomorphisms: 

0 --t Homc(b-‘d,Am(N/N2)) + Hom(b-‘A,&“)) 

+ Hom(b-‘d,C(m-‘)) t 0. 
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But 

and 

Homc(b-‘d,r\“‘(NJN’)) = C?(b*E 8 r\“‘a*&) 
= OF (b*E) @ ~“r(J;tio(Vl) 

by the Kunneth formula and the assumption H* (0 ( vI ) ) = 0. Hence every ho- 
momorphism extends. Finally, by lemma 3.2 of the previous section, 
p*(TY)/Tx E pr’ v , so that we indeed do have a family of normal submani- 
folds. 

Completeness of the family follows from exactly the same argument as given 
by Kodaira [ 9, pp. 158- 1601 building the map ‘z, --+ z by higher and higher 
powers of the odd variables of z, . Note that we need not be concerned about 
convergence since this is a power series in nilpotent variables which thus termi- 
nates. cl 

3.3. DEFORMING NORMAL QUADRICS 

Now proceed in the opposite direction of the previous section, namely con- 
struct a superconformal manifold from its space of super light rays. We have the 
following: 

Theorem 3.4. [fN51zN is a supermanifold with contact structure, then the space sf 
“normal quadrics”, that is, quadrics Q2 = lFDl x PI, embedded with normal bundle 

O(o,l)@TN $ C?(l,o)@TN $ T&IQ@‘o(-1,-l), 

is a supermanifold M414h’ with superconfomal structure. (Here, TN denotes the 
N-dimensional trivial bundle.) 

ProoJ Let the contact structure of N be given by the line bundle valued one- 
form, 0. Let D be the kernel of 0. There is an exact sequence 

O+D+TN+L+O, 

where L is the contact line bundle. L when restricted to a “normal quadric” is 
the 0 ( 1, 1) line bundle. 

The contact form is normal to each normal quadric since 

j’e E H”(Q,sZ’(L)) = H’(Q, (0(-2,O) @0(0,-2)) &U(l, 1)) = 0. 

Thus TQ c D~Q. 
If we define 2, = DIQ/TQ then we have the exact sequence 

O-+D-+N-+LIQ+O. 
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The exact sequence defining 27, 

O-TQ-Dla-I?-0, 
can be rewritten as 

0 - 0(2,O)t~U(O,3) - Dla 
- c3(1,0)~T~0(0,1)~T*t~0(1,-1)~C7(-1,1)-+0. 

We can check that H’ (Q, TQsl?' ) = 0 and therefore this exact sequence splits: 
Dlq r2 TQtpl2, 

Rewrite the first exact sequence, restricted to Q as 

0 --) TQt$-r,- T,Vlc, - LIQ - 0 
or 

0 + T,Q~TT,Q~~I!~F~],~I//~//,--, TNIQ+LIQ‘O, 
where TQ, = 0(2,0), TQr = U(O,Z), tlr = 0(1,-l), ?I, = 0(-l, l), 1’1 = 
O(l,O) 8 T, and II, = o(O.1) iv T'. Consider 

where @WV, = [ , l/D is the Frobenius form of D c TN. Locally, @N = de 
and is thus of full rank everywhere since 0 A (t9)A2+*’ # 0 anywhere. We have 

~~~lQ~Ho(Q,(~zQ~52’QsV*~r\‘V*)sLIQ) 
= H”(Q.SZ’Qs,u~Q)~io(Q,~‘QsV*sLIQ, 

& H0(Q,A2V* 8 LIQ) 

= ~~(C3(-2,-2)~,o(l,l))te~~({(o(-~,o)~~(o,-a)) 

s(C?(1,-1)~~(-1,1)6,C3(-1,0)8T*~~(0,-1)8T)8C3(1,1)}) 
a H”(l\%’ iv LlQ) 

= ~~(0(-2,0)icl0(1,-1)sc3(1,1)) 

~HO(O(O,-2)iuO(-1,1)80(1,1)) 
~~~(0(1,-1)~c?(-1,1)cuc?(1,1)) 

tM”(C3(1.-1)8C3(-l,O)~_ciT*&M(l,l)) 

~~“(C3(-1,1)~C?(0,-1)~T~(3(1,1)) 

~~“(C3(-1,0)~T~iu(0.-1)~T*80(1,1)). 

Thus 

The first two terms are each nowhere zero, otherwise 0~1~ would not have full 
rank everywhere. The @ I,,,@,,, must have full rank everywhere. otherwise we may 
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take (T E ker (@ ],,,s,,, : ~1 + r/,‘@L]~), with G # 0. Then CLI@],~,~~,, = auQ>]~ # 
Oandrr-(oU@] ,,rs,,, )qt is in the kernel of @.u]a. [Here, qt E r (Q, TQl) is such 
that @.,v]~ (qt ) = 1 for some local trivialization of ?I,’ 19 L]e .] This contradicts 
@,v having full rank everywhere. 

Also note that 

H’(Q,o(-l,O)@T*@o(-1,0)sT*i~0(1,1)) =O, 

H”(Q,C3(0,-1) @ T@C’(O,-1) 61 T@C-‘(l, 1)) = 0. 

Hence @]A?,,, = @],,I,,, = 0. 
Now consider the long exact sequence 

0 + ff'(QS) --+ H'(QJW - H'(Q&) 
+ H’(Q,D) --) H’(Q,N) + H’(Q,LIQ) + ... , 

Since 

H'(Q,&) = ~'(Q,OW)) = 0 
and 

H'(Q,D) = H’(Q,C?(l,-l)@C’(-1,1)~~0(1,0)~T$0(0,1)~T*) 
= 0, 

we can conclude that H’ (Q, N) = 0. 
We leave it to the reader to show that H’ (Q, N (9 N” ) = 0. We also note here 

that 
H’(Q,TQ, = H1(Q3(2,0M3C3(0,2)) = 0. 

By the deformation theory examined in the first subsection, the space of 
normal quadrics is then a supermanifold, M, with Th4~ g H”(Q, N), and 
dim( Th4) = dim(H” (Q, N)) = 4]4N. We also have the total space of this 
family of quadrics, F614*’ and the diagram: 

where the dimensions of the fibres of p and x are respectively 1]2N and 2. The 
fibres are also transverse to each other. F is then a P’ x P’ fibration over M. 

Now F graph(p.n) 
L, N x h4. We thus have the exact sequence 

O-tTF-tp*TN@7c*Th4+NF+0. 

Let TQ 5 TF/h4 s ker(rc, : TF -+ n‘Th4). We then have, since the fibres of 
p and rc are transverse to each other, that TQ c p*TN and hence 

O+TQCp*TN-N-O, 
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where N = p’ TN/TQ . 
We also have 

O-+p*D-p*TN+p*L-0. 

Let U be a small enough polydisk in A4 so that we have 

t+(U) s (P, xP*) x u. 

With such an identification we have the projection 

pr : PI x PI x U + PI x PI. 

Using lemma 3.2, we can then write 

N Z pr*CJ(l,O) ~9 T@pr*0(0,1) 8 T' @Pr*T[FD31Q2C*p,xp,, 
TQ E pr*0(2,0) $pr*0(0,2), 

and p*L 2 pr*C?(l, 1). 
As before, we have p”81~Q = 0 and thus TQ it p*D . This gives 

O-V+N+p*L-0, 

where 2) = p*D/TQ . Using lemma 3.2, we will also have 

VDpr*(0(1,0)~T~$(0,1)@T*$0(1,-l)$(?(-1,l)) . 

Note that we also have that the exact sequence definingD splits so that D g TQ@ 
2). [From the above one may define ~1 = pr*CJ ( 1, - 1 ), tlr = pr*C3 (- 1, 1 ), VI = 
pr*CJ(l,O)@T,andv, = pr*0(0,1)8T*withofcourseV = q,$qr$v,$v,.] 

We have from the exact sequence 

O-tV-+N--+p*L+O 

and writing Q = Pr x PI, the long exact sequence 

0 + H”(Q x U,pr*(CJ(l,O) @ T)) @H”(Q x U,pr*(C?(O, 

-, H’(Tc-‘(U),N) -+ H”(Q x U,pr*(CJ(l, 1)) 

-, H’(Q x U,pr*(C3(1,0) B T)) @H'(Q x U,pr*(0(0, 

1)~ T‘)) 

l)@T*))+.... 

Applying the Kunneth formula and the fact that U is a polydisk, the last two 
terms written are zero. Hence there is the exact sequence of sheaves over M, 

O+S+@EESS_@E*+TM+S+@S--0, 

where 

S+(U) = H”(Q x u,pr*(~(l,O)), S-(U) = H”(Q x U,pr*(O)), 

and E(U) = H”(Q x U,pr*(T)). Writing T/M = S+ ~3 E, T,M = S- BE’, 
and TOM E S, 8 S-, this exact sequence is 

O-T,M$T,M-TM-TOM-O. 
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The Frobenius form @hf : A2 (FM $ T,M) + TaM is defined by 

@n/(X, Y> = tx, YIITIM CD TrM 
for X E r (TlII4) and Y E r (TrM) . We wish to show 

@‘it/ Lvr,nr = @Mlr\2~,~[ = 0 

and that @MIAQ-,,,~~~,,~~ corresponds to the convolution 

S,@E@E’@SS_-+S+QIS’-, 

in order to show that A4 has a superconformal structure induced from N. 
We have 

O-,TQ+ TF 2 n*TM + 0 
1 P. 1 P. 

O+TQ%p*TN% N -0 

The map p* actually provides an isomorphism between p-l TM( U x Q) and 
Ho (U x Q, N) for U a small enough open set in M. We may also assume that 
F = U x Q and thus that TF = TQ$TM.Wehavep,[X,Y] = [p*X,p,Y] 
for X, Y E r(p-‘TM). Thus 

[ ?M, T,M] mod TIM CB T,M 

corresponds to 
[VI + TQ,q + TQ] mod D. 

This isjust P*Q?Nl(v,+~g)s(u,+~Q)~ which we have already calculated to be zero. 
We can conclude that 

[T/M,T/M] c T/M@ T,M. 

Now consider [T/M, T/M] mod T/M. Under p* this corresponds to 

[VI + TQ, VI + TQ 1 mod VI $ TQ. 

This represents a section of 

Since 

VI 2 pr*13(1,0) @ T,TQ 2 pr*C3(2,0) $pr*0(0,2), 

D/(q@TQ) ~pr*O(l,-l)g,pr*C3(-1,1)~~pr*(O,1)~T~, 

we have that this cohomology group is zero. TIM is thus an integrable &t&u- 
tion. Similarly, T,M is integrable. 

Also note that if X E r (T/M), X # 0 then under the correspondence given 
by pe, 

@AaIT,nmTrnrb~,*) = p*@nrll/,Q,+(x,4 # 0 
and similarly for Y E r ( T,M) . 
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Thus 

@&/.U@Jf E HO(Qx v,C3(-1,0)~T~C?(O,-1)8T*~i(1,1)) 
= H”(Q x U,T@ T‘) 

with full rank and by the definitions of S+, S- and E, we see that @,t, acts via 
the contraction map 

4. Extending conformal structures 

4.1. THICKENINGS AND POISSON STRUCTURES 

We present in this subsection the definition of thickenings of complex mani- 
folds given in Eastwood and LeBrun [6]. We will also present the definition of 
a Poisson thickening given in LeBrun [ 13 1. 

Let X be a complex manifold. A thickening of order m, XC,,,), of X is a ringed 
space, M, (3~~))~ where O(,n) is a sheaf of @-algebras, locally isomorphic to 
O(t)/P+‘, and which satisfies 0(,,,)/ Nil G 0, where Nil denotes the subsheaf 
of nilpotents in 0(,,1) . The tangent bundle of Xon) may be defined as the sheaf 

T-J&) = Derc K+,,,), Qpl) ) 

and the cotangent bundle may be defined as the sheaf 

l2’X cm) = Hom(TX(,), O(nl) 1. 

Now let X be a complex contact manifold. Let L be its contact line bundle. The 
total space of L - 0~ has the structure of a Poisson manifold, i.e., it is equipped 
with a global bivector field r given locally by 

where t is the fiber coordinate on L and the other coordinates are contact coor- 
dinates lifted from X. r defines a Poisson bracket on L, 

{) }:cJ-+cJ 

given by {f, g) = T(df, dg) . 
Let 7 c 0 denote the ideal of functions vanishing on X = 0~ c L . We have 

{Ik, 7’) c Ik+-‘. 

If we define 0,,, = C3/lm+ i, then { , } gives O,,, the structure of a sheaf of 
nilpotent Lie algebras. Moreover, since @ is contained in the center (with respect 
Lflne } ) of O,,,, 0,,/@ becomes a sheaf An,+ i of nilpotent Lie algebras. We 

G,,, : = ew A,, , 
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thereby obtaining a sheaf of nilpotent Lie groups. Now there is a natural injective 
map 

%,- I /@ -, Der(U,,, 1 
given by f H {.f, .} and this realizes A,,, as a nilpotent subalgebra of Der (U,,, ) . 
Therefore G,,I is a nilpotent subgroup of Aut (0,), ) . 

Isomorphism classes of thickenings of X are precisely given by elements of 
H’ (Aut (0,, ) ) . We have therefore the following definition of a Poisson thick- 
ening A thickening of X of order m is said to be a Poisson thickening if its 
isomorphism class is in the image of 

Jf’bKG,,) + ff’(XAut(U,,)L 

4.2. “SUPERFYING” AMBITWISTORS 

We now show that every space of null geodesics can be imbedded in a super- 
manifold of dimension 5]2nz, for m 5 4. Let N5 be a space of null geodesics 
for some spacetime M4. LeBrun [ 131 has shown that N has an extension to 
a Poisson thickening, N (“‘), of order m for 1~ < 4. If the Bach tensor of M4 
vanishes, then N has an extension to a Poisson thickening of order m = 5. If the 
Eastwood-Dighton tensor of M4 vanishes then N has an extension to a Poisson 
thickening of order m = 6. 

LeBrun also constructs a supermanifold N512”* from Non). Let us recall this 
constructionIt is (p. 66 of LeBrun [ 131): 

Let c3(,,,) (1, 1) be the “divisor line bundle” of N c N(“‘). The line bundle 
CJ(,) (1,l) has a canonical section ~7 vanishing along N. Let C?(,,) (0,l) and 
UC,,) (1,O) be extensions of L+ to NO’*), and let 7 be a complex vector space of 
dimension m. Then 

has a canonical section ti = CJ + id where 

idE7@7* ~/1~(7$7*). 

C? generates an even ideal J in 

A.[ 7~c?(,,,,~-~,~~~7*~~(,,7,~~,-~~1, 

i.e., for every local trivialization of 0(,,7) ( 1, 1) 6 gives a section of this bundle 
and changing trivialization just multiplies this section by an element of 0(,r1) . 
Thus 

N[“‘] = (N,~‘[7~0~,~~-1,0~d,7*~U~,,7,~0,-~~1/~~ 

is a well defined Zz-graded complex ringed space. Moreover Nl’“1 is a complex 
supermanifold, i.e., it is locally isomorphic to 0 (A*@“‘* ) . The nilpotents of 
(3~~~) have become the nilpotents of A’ (7 @ 7* ) ! 



4.3. THE CONTACT STRUCTURE OF L; (,,,) 

We shall first show that a contact structure exists on the total space of the line 
bundle L; c,llj , and then we will be able to show in the next section how this 
“descends” to our supermanifold N51*“‘. 

We may locally lift a set of Darboux coordinates, qj,pj, on N to a set of 
coordinates qj, pi, t on NC,,,) . Let &p be such that exp (r u df,p ) is the change of 
coordinates on Non) between two open sets U, and Up. Here r is the e~elissic 
form given by 

r=t K t&+zp.L &+,&/\A. 
’ dPj ) aq* aq’ dPj I 

We have on a coordinate neighborhood, Up, the one-form 

0, = dqj + Ppjd$. 

Consider how this changes under a coordinate transformation, i.e., 

ew(7Udf,p)*ep. 

If we write X,, S r u d& then 

exp(7udS,p)*Bp = expW~oB)Bp. 

We have (dropping the use of the subscripts Q and /I) that 

CxB=-t$$e+td(/+tg). 

We have then: 

Claim 4.1. 

expK,de = f &k(t) 0 
( ) kc0 

+ (gxktl))d (g$&-+t$) modtN+‘, 

i.e., 

exp(rudf)*B = fexpW)(t) 0 + exp(X)(t)d(F+) mod tN+l, 

where 
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Note that if f(O) has homogeneity zero in t then 

To prove the claim, one may first prove by induction 

where g = .f + t d f /at. This proof is left to the reader. 
We thus see that 

8 + expX(t)dF+ mod tN+’ . 

Hence on an overlap of two open sets U, n Up, we have 

(se),, = ea - ’ 
expJLp (t) 

(expX,8)*8p = td.F+,ls. 

Thus 6 (tdF+ ) = td (63, ) = 0. We see that 

(dF+ Lay mod t”’ = c, 

a constant on triple overlaps. We consider the part of this equation with zero 
homogeneity in t . This constant must be cohomologous to an integer, since the 
left hand side is now (6 f+ )npy where exp ( f+ap ) are the transition functions of 
the line bundle L + . We conclude that exp(F+,p ) form transition functions for a 
line bundle over N(,+t) which is an extention of L, . There is already a unique 
extension, Lc,,~ J + of L+ over NC,,,), which gives a unique extension over N(,,,- t ) . 
[Recall that L, is just notation for c3 (0,l) . ] Thus we may extend exp (F+,p ) 
to be transition functions for Lt,,l)+ . 

Let {OL;,,,+} denote the zero section of L;,,,)+ . One may now check that the 
twisted one-form on L;,,,,+ - {Otin,,+} , given locally by 0 - ts,‘ds+ , where 
s+ is the “coordinate along the fiber”, gives a contact structure on LTm,+ - 

{OLi”t)+ } with the contact line bundle being the pull back of UC,,) ( 1,l) from 
JV(,,~, . Henceforth we write C;(,,,) for L;,,,)+ - {Oq,,+}. 

4.4.THESUPERCONTACTSTRUCTURE 

We now show how the contact structure constructed in the previous subsection 
will “descend” to our supermanifold Af 5 2r”. Consider the superthickening 1 

%l)[m] = (G(m)’ /\~(0(,,,,(-1,0)~~~7*~0(,,,(0,-1)). 

Recall that (3(,,) (0, -1) 2 0(,,I) on fZC;(,tI) . Choose /?z linearly independent 
sections 

ei E r(U(,,,)(l,O) ~30 (,,I,(-l,O) NT) c ~K+,,,,[,?l]U,W 



and m linearly independent sections dual to the above, 

e; E I- (cJ(,,,) (0, 1) 8 0 (“1)(0>-1) S’T’) c m&,,I)[,,l] (0, 1)). 

Note that 

~(“l)[“l] (0, 1 ) g Q(,,l)[,ll] 

On L;b’l)[“l, so that &de, makes sense as a global section of 

~(n,)[m] (1, 1) @ -Q’&,)[,ll] . 

(Note that ~(,,r)[,nl(l~ 1) g ~(,,,)[,,,](l,O)) on f;(,,,,r,,,l .) 
Let S+ be the coordinate along the fiber of C+(,,,’ and s- a local section of 

0(,,,‘(-l,O). Also let 4’ s s-e’ and v/; z s+e, be the odd coordinates on 

f&l,[l’l] . Since ~;(1’1)[“1] is split, 0 - ts;‘ds+ is a well defined twisted one- 
form on it. We have then 

8 - ts,‘ds+ + s1’ (s-e’)d(s;‘s+e;) 

= 8 - tdS;‘dS+ + SI’$‘d(S~“j//i) 

= 8 - ts,‘ds+ - s~‘s,‘f$‘pjds+ + s:‘f#h;‘dy/j 

= 8 - tS,‘dS+ - SI’ST’f#)‘vjST’dS+ + S~‘ST’$‘d~/i. 

When pulled back to C; t,,,] = {t + s:‘s;‘$,~, = 0) this is 8 + s:‘s;‘~$-‘dv~ 
and thus descends to an CJl,,,] ( 1, 1 )-valued contact one-form on Nl,,,] . 

4.5. EXTENDING CONFORMAL STRUCTURES 

A complex conformal spacetime is said to be civilized if its space of null 
geodesics forms a complex manifold. It is said to be refle,=ci’,e if it is the space of 
normal quadrics for its space of null geodesics. 

Corollary 4.2. Let M4 be a comples conformal manifold. Assume M is civilized 
and reflesive. M then has an extension to a complex superconformal manifold 
M414n1, m 5 4 ; ifthe Bach tensor vanishes M has an extension to a supercollformal 
manifold, M4120; if the Eastwood-Dighton tensor sanishes, M has an e.ytension 
to a superconformal manifold, M4iz4. 

In general, if the ambitwistor space N5 has a Poisson thickening of order m, 
then M4 may e-xtended to a superconformal manifold M4i4”‘. 

Proof: Let N be the ambitwistor space of M. By our assumptions for each ?H 
and our previous results, N5 has an extension to a supercontact manifold N512,,,. 
Since M is reflexive, it is the reduced space of the space M414”l of normal quadrics 
in N51ztn. M414”’ by its construction is a superconformal manifold. 0 
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(Note: For ~7 5 4, there were no special assumptions, beyond civility and 
reflexivity, on our spacetime M4.) 

This result is now a fully curved version of the linearized result of Chau and 
Lim [5]. 

5. N = 3 SSYM equations and integrability 

5.1. INTEGRABILITY ALONG SUPER LIGHT RAYS 

Recall that a superconformal structure is partly given by the exact sequence: 

Choose a local splitting of this exact sequence so that 

We assume that our connection is given (locally) by 

d + A = d + (Aa&, CL),i, Wi;) . 

Integrability of this connection along super light rays is by definition the van- 
ishing of the curvature of this connection when it is restricted to a super light 
ray. This implies that the curvature has a special form. Consider the (local) 
decomposition of SZ’M as 

~S;~S~~S;~E*~S;SS~_~S)~EESS;~E*~SI~E 

= A2S; @ A2nE’ @c&S; 8 c&E” @ /+: 8 A’nE 

~3,‘s: @ a2nE $ A’s: (9 0’s; @ /j2s; & 0’s” 

~~‘S;~S’8E*$02S~~SI~E’ 

~B,~S’%S;~E$ ~‘S*~S;gE6)S;~Ef8S~tE. 

The tangent space of a super light ray is generated by super light vectors which 
are of the form 

qcl @ vB + ?I” Cf3 ei + Vs 8 ej) 

where the 11” and VP are fixed sections of S+ and S- (except for scaling), and 
the ei and ej are sections of E and E’ that are allowed to vary freely. The 
vanishing of the curvature F.4B on the super light ray implies for example that 
F..IB (?I” 8 ei, IMP 18 ej) = 0, i.e., F.4~ has no component in O’S; 63 @‘E*, and 
similarly for other components. 



We thus obtain 

F.-1B = J%jQ + W’jQ + .&Ec,p + .t&p: + X,;&ip + X&j. 

(This notation now coincides with Harnad et al. [ 71.) 

5.2. EXTERIOR DERIVATIVES AND CONNECTIONS 

We shall now define (at least locally) a certain operator on sZPh4; it is an 
“exterior derivative”, d, that is similiar to the regular exterior derivative, d , but 
such that A2 # 0 in general. The N = 3 SSYM equations will be written in terms 
of components of A . A actually comes from the nonintegrability of T/M $ T,M. 

Once again, consider a local splitting of the exact sequence 

O~S2dM-,52’M-,SZ,‘A4~sz,‘M~O 

so that 
i2’A4 E Q;M$Q;M$Q;n4. 

The Frobenius form @ : Szd A4 + S2,‘M is~ Q’h4 is then well defined (locally) as 
a map from OdM to S2’M. Define A : QdM -, Q2M by 

A=d-@. 

On 52,‘M$52,‘M define A : SZ,‘MCBQ~A~ --t Q2 to be A s d. Also define 
Af E df for superfunctions f. 

Now extend A to all of SZ’M by the Leibnitz rule: 

A(w, A 02) = (do,) A m2 + (-1)“~~ A AQ~. 

We may consider connections on vector bundles coming from this “exterior 
differentiation”, D : r (E @ .WM) --f r (E 8 lP+ ’ M), where 

D(a@m) =D(a)~o+a@A(o) 

for cr E T(E) and o E r(Q*M). 
LetA,;=~~oA,A~=~,.oAandA,~=7cOoA. 

Proposition 5.1. [dOi, AX] = -@fi!A,b. 

Consider @ as an operator on PM by @ E 0 on .Q,‘M and Q;M, @.f E 0 
for S E r (A ), a superfunction, and extend to all of SZ’M by the Leibnitz rule. 
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From this, it is clear that d = A + @ on all of Q’M and that @’ = 0. Since 
d2=Owehave(d+@)2=Oandthus 

A2 = -@A-A@ 

or 
(Aail + Aoi + A-!)’ = -@A -A@. 

Let K~ E r (QPM), IA) = p, where A is a multi-index, and elements of A are 
indices of the form (~a), (cri), and (i ). Consider both sides of 

(A,, + A,j + A;)‘q = -(@A + A@)tc/j 

and the terms in each which have values in 52,: M. s2/ M. .Qj M. We also assume 
that @ corresponds to convolution so that 0:::: = dL6:@ and thus A,, (a;$ ) = 
0. Hence 

(AcyiA; + A~Ani)ic,~ = -~P;;{d,,yc~ + A,,@icA - A,,@K/, 

= -@‘+A .K an, )‘)’ .+I . 

For a connection (A,,;, W@;, o!, ) define 

D,;, = Aott + ‘4,;) 

For vu, a section of our vector bundle, we ha;e 

Fv“ = (d + (A,;,, w,;, wi,, ) (d + (APB, opx-, o$) )v” 

= ((D,,, Qni, QL) + @!t’, (Dpjsua + Qpiv’ + Q$va) 

= [D,,,Dpj 121“ -t ID,,, Qpilv” + iID,;,, Qilu’ 

+ [Qai,Qpj]uUa + [Q~,Q~l~’ + [Qni,Q~lv’ + @cf~~D,~~u* 

If the connection is integrable along super light rays, we obtain 

Note that the last equation is true, at first, only for sections of E and not for 
sections of E 8 f2.M but by the previous calculation it can be extended to 
E 8 Q’M: By the above 
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and thus 

= -@+D “‘I, 1’1 
on all of E (17 L2*A4. Here we assume that the Frobenius form corresponds to 
convolution and D,,. Qni, Qi are written with respect to such a basis. The above 
equation is just 

[Qai, Qd 1 = -6/D,, . 
Using the Bianchi identities one may define An and A;, by 

5.3. THE EULER OPERATOR 

We define, only locally, the Euler operator by 

D = e%3ptP + efapef. 
Recall that 

Qni = g,Bi’Apj + CO ai > Qi, = g;{A; + co;, . 

To describe ZY in terms of Qni and Q:, we shall need the following: 

Lemma 5.2. There are coordirzates s”, Vi, Of such that 

g,B,’ = Inpi’ mod (Nil)“, g;ff = flff mod (Nii)‘. 

ProoJ: First form new functions 

,g,4’ c gi{ (.Y/, e,, 0) , g;f E g;,;. (x,, er, 0) . 

More specifically, since x7 = sa + iH”, 

j$(~,e,,e,) = g,Bi’(, + iH,e,,o) 

The above sum is finite since Ha is nilpotent. Define ii! similarly. Clearly 

q+pJ = 0 1’ 0 I q&; = 0. 

Now note that 
e/Pj z ii/pi , e;b - gfej 

are well defined odd coordinates such that de’aj and dt3;p span fi:iLI and a,! A4 
respectively. (Recall that S2,~,M are defined as quotient bundles.) 
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Since 

we have 
dtl’pj = s$ 8 ej mod (Nil)’ . Q’M. 

If i is the isomorphism from 5211 M with basis de’pj to S; BE* with basis s”+ @e’ 
then it is clear that 

Similarly 

ipi’ = Z,4’ mod (Nil)‘. 

= Zi$ mod (Nil)‘. cl 

Using the coordinates Pi and OF from the lemma and dropping the use of 
the primes, we can now write the Euler operator as 

v = evni + efd; + u~~“A,, + PA,,~ + T;“A; + efiiroi + efP, 

where L/O” E (Nil)’ and Irai, l? E (Ni1)3. The r,i and <l are -(the “Christoffel 
symbols” of A,,; and Ad). Also define 

fi = e”iA,i +. e”Ad. 

Note that if we impose on a connection the transverse gauge condition 

e53,i + ejhi, = 0, 

then 
B = eaiQni + (IfQL. 

Also note that B = D + T, where T is an operator which strictly increases 
nilpotency and is, of course, independent of any particular connection. 

5.4. EQUIVALENCE OF DATA 

We wish to show the equivalence of the following three types of data (see 
Harnad et al. [ 71 or Schnider and Wells [ 191). We will be working thoughout this 
section over a neighborhood of M for which we have a choice of supercoordinates 
and a trivialization of our vector bundle. 

i) Integrability along super light rays. The superconnection (ii,, , Q,i, wb ) 
subject to the constraints: 

i.QnitQpjl + [Qpi*Qnil = 0, 

[Q;,Q:,l + [Qi,Q;il = 0, 

[Qa;, Q;] = -djD,, , e 
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and the following “transverse” gauge condition: 
eaiu,i + eiwi = 0. 

Note that the first two constraints are equivalent to 

for some superfields W;:j and FV’j. We have thus already shown that a connec- 
tion with curvature vanishing along super light rays satisfies these constraints. 
Likewise the constraints imply, via the Bianchi identity, that the curvature F 
has the form written before for integrability along super light rays. 

We also note that the “transverse” gauage condition may always be validly 
applied, i.e. given a connection, we may always find a second connection gauge 
equivalent to it which satisfies this condition. 

ii) The superfield equations. The superfields {A,,, A,, A,, XL, X i&p Vi, W ‘} 
(where w E EijkWjk and IV’ s eijk Wjk ), subject to the superfield equations 
written below, with the rd dropped. In addition, there is a certain set of relations, 
called the $-recursions, which are defined in terms of @. The $-recursions: 

. 
Dwjk = Eijke’“& + efxk& - e&j&, 

fiwWik = &kefad! + @ax,” _ ekax.i, 

73A& = -fupeiBXij + E,ef& 

~Xidr = 2eisD,&+wji + ze$& + 2efekj [ wik, wik] - fef& [ wk’, w,[] , 

fix: = 2efDajwji + 2eiEfab + 2eis&g [ wjk, wik] - ;ei86,p [ wki, wk’] , 

tiA, = geihpa [ Wij, Wk,]Cjk’ + f$cijkDa,,jWjk, 

a& = ;eQcAj [ W’j, Wk’]6jk[ + eiaCijkDakWjk, 

tifas = teiy& [E~~D,~;c~~ + ~~~~~~~~~ + efp,p; + D&J, 

e&j = qef@ [cjiD,gfp + eaiDajxj.] + jeiy[Dy~ia + Dyfix i&l . 

iii) The (reduced) field equations. The component fields {Ard a&, Ard a, 1, h, 
X :da,Xrd ih, wrd i, w&} subject to the (reduced) field equations: 

ND rd q3 ‘&d/? + [Xrdi), w,dl = 0, 

&) rd&&-dj + [x:d,, %-dil = 0, 

EaBD ,.da,jxj!ds + [xrdi/j> wdklEijk- lnrdb’ WA1 = 0, 
E&Q) rd&xrdjb + b!k,sW$lEijk- [ardm wdjl = 0, 
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t”@D,,,,,D ,.dpfiwdj + 2{ [[w,‘,, wdjl, wdil - [Lw:d, wdil, wdjl) 

+ ~"{Xrdj&,Ard~} - tfijkf”P{Xtd,>Xfdp} = 0, 

@Drdn~.frdg~ + ‘UiD,,‘;lfrdjqj + {X;d,>X,dkb) f {‘bdy&d~) 

+ [ MC;> Dr, ,‘/j wd i 1 + [ Hcd i, D, ,‘/j w;d 1 = 0 . 

ProoJ Obviously, ii) + iii) is just trivially applying reduction. The proof of i) 
j ii) follows through just as it is done in Harnad et al. [ 71. We repeat their 
argument here. 

We first have the super-field curvature tensors A,p and J$ defined by 

P,,,Dpjl = Q&I + cg.&j . 
Using the constraint equations and the Bianchi identity, we obtain superfields, 

(1) 
(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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Qitl~ = f~,b [ W'j, Wkr]~jkl, (15) 

Q& = E iik D~u Wjk s (16) 

Applying 
D ’ = i (QuiQL + QAQui) cm 

to A~,J~,xi,x~~ and using eqs. (l)-(16) gives the first four superfield equa- 
tions. Apply Qpj to the second superfield equation, Qi to the first superfield 
equation, and Qyj to the third superfield equation, to give respectively the last 
three superfield equations. 

Apply fi = euiQai + @Qi to Wij, Wk’,~ia,x~,~ml;,fap, f&j and use eqs. 
( 1 )-( 16) to yield the &recursions. We note that we have 

[dfii,d,&] = [dj,Li,&] = 0. 

(This follows from d * = -do - @d or from a local calculation where the 
“Christoffel symbols” of dbi and dj respectively cause cancellation of [qgi, a,,] 
and [qi, a,,] .) Thus 

[6,Da] = fi,A,;,. 

This then gives 
@Aah = iVXi$Ba + efxgB,. 

Applying 8 to Qai = &i + Oai and Qi = df + W: gives US 

(1 + e)Oai = 2E,p@jWij + 2@A a& 3 

(1 + 73)c0~ = 2c+e;B wij + 28% a& * 

In proving iii) =F- ii) we must first take the B-recursions as defining Aah, a,, 
&, xt, x ih, Wi, W i inductively on their nilpotency. We note that this is possible 
since B = D + T, where T strictly increases nilpotency and is independent of 
the connection. Next we are. trying to show that 

G=O, 

given that Grd = 0 where G is the left-hand side of one of the superfield equa- 
tions. It is actually a system of equations 

n-l 0 
where&E(Nil)k.Assumei=G=...= G =OwhereGzGG,d. Now 
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Also 

<II 
where G is G for some ! < II, i.e. zero, and ‘6 is just 6. Thus 

A &j- = (IY~Q,~~G + S:;Q;G,. 

The D-recursions of Harnad et al. [ 21 are valid as &recursions by just replacing 
V everywhere with fi. We can use the 2krecursions in exactly the same manner 
as Harnad et al. [7] use the D-recursions, to show recursively that if G is the 
left-hand side of one of the N = 3 SSYM field equations then 

This completes iii) + ii) . 
Now turn to the proof of ii) + i) . Similarly as in Harnad et al. [7] we have, 

assuming i) (integrability along super light rays): 

(1 + ti)O,i = 2E,,PePjU/;.j + 28” 4 1 ’ no ) 
(1 + ti)O:i = 2E;ljH$j + 28”‘;1,&. 

One can thus use this to define recursively 

where T = 2? - ID. Note that Ti,j as an operator strictly increases the nilpotency 
since 

T = UaliAaa + J”jApj + 

where Uflb E (Nil)‘, P’pj, VjD E (Nil)3 and I”j, I” locally are just matrices or 
zero. Thus 

” 
& = T(CCJni), 

(<II 

One can similarly define (of, recursively. 
We will want to prove eqs. ( 1 )- ( 16 ), just as is done in Hamad et al. [ 7 1, which 

in turn imply the constraint equations for integrability of the connection along 
super light rays. As is done there, apply (1 + ID) to both sides of the equation 
we are trying to prove, G = 0, and use induction on the nilpotency. 
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We have 8 = 0 for eqs. (1 )-( 16), using the Zkrecursions. Assume G = 0 for 
I < n . Then 

A A 
(1 + D)G = (1 + V + T)G 

A ” , 3 , 
1 (1 +fi)G+ &) = (1 +ti)G. 

la 

One can use the Zkrecursions in exactly the same way as Harnad et al. [7] use 
the D-recursions to show that this last expression is zero for G = 0 being one of 
eqs. ( 1 )-( 16). To show that these equations imply the constraint equations we 
apply 2 + 5 and a recursive argument on the nilpotency to both sides of each of 
the constraint equations. We refer the reader to ref. [ 7, p. 6191, where Harnad 
et al. show, as an example, that 

using eqs. ( 1 )-( 16). This completes the proof of ii) + i) and thus completes 
our proof of the equivalence of the three sets of data. cl 

We note that i) e iii) tells us that the data of the reduced fields determines a 
unique superconnection (up to gauge equivalence). For if we had two supercon- 
nections corresponding to the same set of reduced fields we could then find for 
each a superconnection which is gauge equivalent and which satisfies the “trans- 
verse” gauge condition in a common fixed choice of super coordinates. These 
two connections would then have to be equal to each other by the equivalence 
of data proven above. 

6. Vector bundles and SWIM fields 

It is now a well established procedure to show the equivalence of N = 3 
superconnections integrable along super light rays and vector bundles over the 
space of super light rays which vanish on normal quadrics. The reader may refer 
to Manin [ 151 or Schnider and Wells [ 191. Recall the double fibration: 

F 
P 

< 

~516’ . M4112 

We present here the argument of Manin [ 15, pp. 73-741, to construct from a 
connection on M41” which is integrable along super light rays, a vector bundle 
on N516 which is trivial on normal quadrics. 
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Assume the fibres of p, i.e. the super light rays of M, are connected. Let 
( &AI, V) be a vector bundle with connection on M, which is integrable along 
super light rays and which has zero monodromy along these fibres. Let TF/N = 
ker (pa ) and let VF,N be the composition 

where res is the restriction to TF/N. Define &$ = ker(VF,N) . Since VFIN has 
no curvature or monodromy and the fibres of p are connected, we have that 
EN = p,&b is a locally free sheaf of AN-modules on N. Furthermore, this sheaf 
will be trivial when restricted to normal quadrics. 

Now let &,&f be a vector bundle over N which is trivial over normal quadrics. 
Let &F = p* (EN) . Since 8F is trivial on the fibres of X, we have &F = A@&,& 
for some sheaf &o, which we can identify with some sheaf E,u on M. The vector 
bundle EM will then, by its construction have zero monodromy along any null 
geodesic. A connection on &A[ can be defined by a straightforward generalization 
of the Sparling-Ward splitting outlined by Shnider and Wells [ 19, pp. 52-531. 

Let N5t6 be a space of super light rays constructed for a complex conformal 
spacetime M4. Assume also that M4 is civilized and reflexive and initially that 
M4 is a Stein open set over which our vector bundle &,.d is trivial and which 
is a supercoordinate chart for its extension M41r2. The above establishes the 
following theorem: 

Theorem 6.1. There is a one to one correspondence between equivalence classes qf 
- Solutions to the N=3 SSYM equations on of a compkx conformal spacetime 

Ad4 with no monodrorny on any null line 1, and 
- Super vector bundles over the space qfsuper light rays N5i6, which are trivial 

over normal embedded PI x PI . 

We may now piece together the local versions of this theorem to produce a global 
version in the manner a la LeBrun [ 12, p. 10591. We first cover our spacetime 
with convex neighborhoods for which the theorem already holds. The theorem 
will also be true on their overlaps. 

Over the image of each of these in the space of super light rays we obtain, via 
the correspondence, a super vector bundle. On an overlap we have uniqueness 
up to isomorphism and thus an automorphism of the super vector bundle over 
it. On the reduced level this automorphism is the identity. But the identity has 
only a unique extension over our overlap. Thus we may piece together uniquely 
the super vector bundles over the images to obtain a unique super vector bundle 
over the entire space of super light rays which is trivial over normal quadrics. 
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