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1. Introduction

1.1. BACKGROUND

In 1978 Witten [22] showed that there is a one to one correspondence be-
tween solutions to the N = 3 Supersymmetric Yang-Mills (SSYM) equations
on complex Minkowski space and certain holomorphic vector bundles over a
specific supermanifold, the space of super light rays. This result is in the spirit of
Roger Penrose’s Twistor theory: Analysis on one space is replaced by complex
geometry on another, albeit in this case a superspace. The main result of the
present paper is an extension of this result to complex conformal spacetimes
with general curvature.

The original Ward Correspondence was produced by Richard Ward [20] in
1977, relating instantons on a self-dual complex conformal spacetime to certain
vector bundles over its twistor space. (Self-duality refers to a restriction on the
curvature of the spacetime, which actually ensures the existence of a twistor
space.) This result led to a complete classification of instantons on S*, since the
corresponding vector bundles over its twistor space, CP3, could be studied using
techniques from algebraic geometry.

Shortly after, Isenberg, Yasskin and Green [8], and also independently Wit-
ten [22], produced a Generalized Ward Correspondence for the full Yang-Mills
equation on Minkowski space. Solutions here correspond to certain vector bun-
dles on the third infinitesimal neighborhood of the space of null geodesics em-
bedded in CP; x CP;. Finally, in 1986, LeBrun [12] extended this result to
“self-dual” complex conformal spacetimes.

The present work relies in no small part on LeBrun’s result [13] that ambitwis-
tor spaces may always be thickened up to order 4. If the Bach tensor vanishes, it
may be thickened up to order 5, and if the Eastwood-Dighton tensor vanishes,
up to order 6. This result was in turn based upon the linear version given by
Baston and Mason [1]. A linear version was also given in the supersymmetric
setting by Chau and Lim [5]. The role of the Bach tensor as a Yang—Mills current
was originally discovered by Merkulov [16].

This work is contained in the author’s doctoral dissertation, which was sub-
mitted to the Department of Mathematics, SUNY at Stony Brook in partial
fulfillment of the requirements for the Ph.D. degree. Thanks are due to Claude
R. LeBrun for his constant encouragement and guidance.
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1.2. SUPERMANIFOLDS

Let us recall the definitions of superalgebras and supermanifolds. A superal-
gebra or Z;-graded commutative algebra is an algebra in which every element
can be written as a sum of an even element and an odd element. Even elements
commute with all elements in the algebra and odd elements anticommute with
odd elements.

A complex supermanifold is a pair (X, 4) where X 1s a complex manifold and
A is a sheaf of Z,-graded algebras over C which is locally isomorphic to A, O®™.
We also require that globally 4/N = O and that N/N? is a locally free sheaf
of O¥-modules. Locally, sections of 4 on a coordinate neighborhood U will have

the form:
&= Z gm’,
1
where g; = g/(z',z%,...,z") € O(U) and n',...,n" are linearly independent
sections of O®” . The z!,...,z" and !,..., n™ are referred to respectively as the

even and odd complex coordinates.The Z,;-grading on A is represented locally

by: g is even if
g= > an

1] even

&= Z gm'.

/] odd
Note that a change of coordinates is required to preserve the Z,-grading.

One defines super vector bundles as locally free sheaves of .4-modules and
the supertangent bundle as the sheaf of derivations of superfunctions over C.
The supertangent bundle is then a supervector bundle. One may extend many of
the ideas of differential geometry, such as differential forms, and the Frobenius
theorem, to supergeometry. (We refer the reader to Kostant [10].)

and g is odd if

2. Superconformal manifolds

2.1. SUPERCONFORMAL STRUCTURES

A superconformal structure c2m a 4L4N supermanifold is defined by the exis-
tence of supervector bundles S,rlo,Sil , EO¥ and the exact sequence

0T Mo T.M - TM - ToM — 0,
where we have isomorphisms
TIM=S,Q®E, I M=S_gE", ToM 2SS, 5.
T;M and T, M are required to be integrable distributions and the Frobenius form
Q. TIMRT,M — TyM ,
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where
DX®Y) = [X,Y]mod (T)M & T, M)

is required to coincide via the above isomorphisms with the convolution:
S, QEQE*®S_. - 5,05_.

The Frobenius form is then said to be nondegenerate. (These are the only cur-
vature conditions necessary to construct the space of super light rays.)

We refer the reader to Manin [15, pp. 277, 278] for the definitionofan N = 1
superconformal structure for which the above definition for any N is a simple
generalization. The N = [ definition is based on the work of Ogievetskii and
Sokachev [18]. Merkulov [17] has also generalized this definition to the case
of N-extended paraconformal supermanifolds.

Since T;M and T,M are integrable distributions we may define

M) = (Mg, Ket(T,M)), M, = (Mg, Ker(T)M)).

We then have the double fibration A — M, ,. The local coordinates xf, goi

and x?, Hj-‘ on M; and M, respectively pullback to functions on A/. Define the

functions
a —

xf 4+ x7 He - xXf —xf

2 ’ 21
Take x4, 0%, 07' as local coordinates on M. Note that the functions H¢ are nilpo-
tent since (x/'),q = (x7),q = x%. Also define the functions

. OHN\ ! aaHC ; . OH\™! a(?HC
a_ . _ ekl Jja _ _
Xﬂj_1[<1 16,\‘> } 505 ° Xﬂ = -1 <I+lax> 7
c C(?OJ-

X

The derivations
0 7 j 0 b i

Xx? = — / ,
+ a 36? a 8xb

QQj = 66"j ajaxb >

then form a local basis for T;M and T, M respectively and the one-forms
@ = dx? - doPiXg, - dofx

form a local basis for .Qo‘ M. (See Manin [195, p. 281].)
The space of super light vectors, X, is defined as a submanifold of QOI'M :
T={veQiM|v=s,0s5,5, €S,,5_ €S}.

(Here, ' denotes removal of the zero section.) Let (x4, 6%/, 65‘,{(,) be local co-
ordinates on .QO"M where a local section of .QO"M over M is given by & w?.
On .QOl'M, E,w? is a canonical one-form. d(,w?) is called the standard pre-
symplectic form on QO"M . We proceed with a pre-symplectic reduction on .QO" M
to construct our space of super light rays for M44V,
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2.2. THE KERNEL OF THE PRE-SYMPLECTIC FORM

Denote the isomorphism T;M = S, ® E by
s ®e = gffqﬁk,
the isomorphism 7, M = S_ ® E* by

sT e = f,\ qﬂ
and the isomorphism ToM = S, ® S_ by
st ®sT =h20/0x".

The condition that the Frobenius form coincides with convolution via these
isomorphisms is that:

1Bk 0
a,qp,,fkq,,] Mg 6/ mod ()M & T, M),

1.e.,
flﬂq)d\ h log _ 505051

a“g )

where

9]
[Qﬂnqﬂ] = ﬂ/f'B - mod (TLM & T,M).

It is a straightforward calculation, using the definitions of g,; and X, to show
that 3
[Gair sk ] = (gpj Xai + qﬂij;,-)gr—c = 0.

Similarly,we have

- 9
J cj i yei _
3= @ X) + g X =0

The pre-symplectic form d&; A w® + &, A dw? is then
da N + Eo A (dOPI NdXG; +d0F X))

(4.9

= dE, N " — £,d0P Nt DXE,[0x — EdOP A w aX/0x¢
— &EdgFi /\d(?ﬂ(q,ng + q/}XﬂJ)
~£ad0P) A O™ (qg; X5y + auXGy) = EadO] A dOL(a)XSF + g X))

The last two terms are zero and the fourth is —d8%/ A d 05 (D;/’;fjéa. So we have

altogether for the pre-symplectic form:
¢

: ax
d(¢aw?) = dEgnw*—d6% A w“éca—ff
X‘-‘f

dx

—dGﬂ/\w"éc —dG’”AdG”(D"" a-
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Pull this form back to
2= {hgdfahzﬂfbfaﬂfdﬂ = 0}

(where €% = €!! = 0 and €% = —¢!0 = | and similarly for ¢%), so as to find
the kernel of the pre-symplectic form restricted to .
— Bk I _ fIB,J o :
Let Dyy = g, qpr and D, = f&j a5 - Alsolet{,, = hfméf' We claim that the

vector fields
k 0
fa#€#ﬂ< éC (9’(" 66[1)

cj
Ed;’lc | p! —‘f[/jf 6Xﬂ 9
nu o 0j ¢ §xa 8&,

are in the kernel of d (&,w?) . This calculation will be left to the reader.
We must show that Q; and Q' are tangent to the space of super light vectors,
2, i.e. that

Q

Ql

Q1 (8,8 €y = Q1L 06" e™) = 0
onl:

Q[ (CW}C“I]E#U EI‘“.I )
y XS, 8 .
€ Liglf (‘Jﬂk ~Eegii B ) (R &gt e ci)

= e 8lf ((q,ekh :dc,,,-,—:c '”h“c )e”w

aX; .
6G-KCK'K'g‘a'ﬂ[k <(qﬂ/\hd )édCuu éC a /Zk hﬂ C l',)fﬂufﬂu

€ox aXﬂk a v
= CKK 8s qﬂl\huu - ga/ dx h C#ﬁédG €.
To show this is zero, consider the quantity

Bk 8Xﬂk

d k d
‘Raluu = gf[ qﬁkhw} ol ox ha + g (qﬁ’\ g#m

)g#‘,,',"[hd»

. and thus R4

aglvy

We claim that RZI./.; = —R4
Bianchi identity:

a = R{. €5, This follows from the

ym

k !
0 = [&5qp. L&) q,m,fu,’,’q"]]
)m

+ [f;,l,’,’ N [g ol Qﬂky ,,/' Q)wz]] + [ 8.1 Q)Jma f qp,g ! Qﬂl\]]

(we do not sum over /)
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(g% qm.h,,,,d 21+ U7 8l ape gl am) ] + (0 = v)

vn

ax4,
ﬁ/\ ha Bk

k ) 1
v x4 + gf, (‘Iﬁkg,’/l’”)f“ dn )__

k d
(gfl qﬁ’\'hm) - on yrm’ gy
+(@e=v)ymod (TIMaT,M).

But f“‘ dn  _ gwlalh sO we obtain

vn > opum

0 = (Ro']uu ulau ) 8/6\
Thus R4 . = —R9 .
alve viev
Now
Q[(C,,,‘,CM',E”"E‘.“.')

— 2601(4-'“_( g[l,,,Cu;ﬁ#"f”"éb

ym

267, 8 (apigl)) g s i€ €&
— axckknz;faufuu E[u'/c é
26 L8 2 Qg ) ! Lo G €
= 26’"‘6’“’72,‘;7],& R RS
— 267,825 (a5 g))) g Naby v € €M = 0,

since €#*neny = e‘“’v,;v‘-‘ = 0 and where we have written {,.;. = n,0,. for some
spinor fields 7, and v, .

There is a similiar result for Q' and hence [Q;, Q'] is also tangent to 2 . In addi-
tion, [Q;, Q'] is in the kernel of 4 (&,w?)|x since the kernel of a closed two-form
is closed under Lie brackets. We claim that the set {Q',0;, P = ¥, [Ox, O*]}
forms a basis for ker(d (¢,w?)|x) and thus that this kernel has rank 1|2V.

Now

rank (ker (d (¢aw?)|5)) < rank(ker ({d (o ™)| 5} ) ),
where {d (£,?) },4 is the reduction composed with d (£,?)| r and takes sections
of TZX to sections of (Q2'X),,.

We have

{d(Ew}rg = déandx + dP p ol Dok S
= d&; Ndx® + D** A D¢navy,
where D¢ and D§ are dual to D, and D¥ . Now
(TE)rg = (o) ® (W*TIM & T, M),g,

where 7 is the natural projection to A/ and our bilinear form is actually a
direct sum of two bilinear forms, the two terms just written above. The first



A. McHugh / The space of super light rays 23

term has kernel of rank 1, while the second has kernel of rank 2N. Thus
rank (ker(d (&;w?%)|s)) < 1]2N. Since

(10", Qi 1)ra = (h ),daa+A fﬁ“’

for some quantity A,, we have that this rank is actually equal to 1|2N.
Ker(d ({,w?)|s) 1s then a distribution. It is also an integrable distribution
since, as stated before, the kernel of a closed two-form is closed under Lie
brackets. The space of super light rays will be constructed from the leaf space of
this distribution. It will therefore be useful to inquire into this in the following
section.

2.3. A LEMMA ON LEAF SPACES FOR SUPERMANIFOLDS

Let D"—P"=4 be an integrable distribution on a complex supermanifold, Y.
The reduction of D splits into an even and an odd part:

Drg = Drgo®Drg 1 -

D,40 1s an integrable distribution on Y,;. Assume that the leaf space of D, 40 15 a
complex manifold, de, and thus that we have a holomorphic map p,; : Y,q —

X,4 whose fibres are the leaves of D,; . We wish to examine some sufficient con-
ditions under which p,, extends to a map, p, onto some complex supermanifold,
X, such that the fibres of p are the leaves of D.

Let B = p,;.(kerD), the push down of the sheaf of superfunctions on Y,
which are annihilated by D. Of course, pr‘d'B = kerD. We will show that under
appropriate conditions, X = (X,4,B) is the complex supermanifold that we
seek and thus that the canonical identification pr‘d’B = ker D defines our map
p between supermanifolds.

We need to show that B is isomorphic locally to /\'Of{?fi. It is sufficient there-
fore to assume X, is a contractable Stein domatin and thus that ¥ has a covering
by Frobenius charts, {U,}, such that the even coordinates satisfy x,,; = Xg,q4.
We wish to show on this Y that p' B is globally isomorphic to A* p;,' OF? . This
will give the local splitting of B on X.

We first observe that on Y, p ;!B and A*p;;' O%? are already locally isomor-
phic. Indeed, this is clear if one restricts oneself to a Frobenius chart where
we have local coordinates x4, 6/, y?, ¢* such that D is spanned by 8/8y® and
0/8¢*. Any change of coordinates on an overlap of two Frobenius charts is
an automorphism of A\°*p'OF?, as a Z,-graded algebra, which leaves fixed

P/ Ox, C A\ P (9@" (Note that we have a covering such that x7,, = x3,,.)
Let A denote the sheaf of all such automorphismes. pr‘d'B is then given by an ele-
ment, 7, of the point set H!(Y,4, A). We wish to examine the structure of p,‘d‘B
order by order. Let Nil denote here the subsheaf of nilpotents of A°*p'O d e"
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Let AY) denote the sheaf of automorphisms of (A®p;;' O3?)/(Nil)/*! which

preserve p—'Oy,,. We have A = A and a natural map A — AY for /> ;.
We have the exact sequences for j > 1,

0= o 4 5 AU-D L 0.

The structures of CY) have been given by Batchelor [2]. (See also Eastwood and
LeBrun [6].) They are

¢ = AW = GL(g, p,‘,,‘ox,n
Y = Der(p;Ox,) ®/\ p—‘o@" for j even,
cY) = Hom(p 027, \’ p,j,‘oj{?rj) for j odd, # 1.
Let 7y, be the image of 7 under the natural map
H' (Yo, A) = H' (Y4, A") = H' (Y4, GL(4, 57/ Ox,)) .

This represents a vector bundle on Y,, and one can check that it is also given by
((TY);41/Dra1)*. We assume for now that this is a trivial bundle, i.e. 7(j) = 1.

We now apply the machinery in Eastwood and LeBrun [6] of non-abelian
sheaf cohomology to each of the exact sequences written before so as to examine
the structure of pr‘d‘B order by order. Assuming inductively that the preceding
order gave a trivial structure, i.e. 7(;_;) = 1, This structure is given by

H! (Y,d,Der(prj,‘O\-,d)®/\Jpr‘d‘ (93?‘7) for j even,

H'(Y,;,Hom(p; ' 04, /\ p;d‘o ) forjodd, # 1.

These sheaves are inverse images of vector bundles over X, ;. By a theorem of
Buchdahl [3], these groups are zero if we assume H' (pr‘dl (x),C) = 0 for all
x € X,q.

We had assumed before that the vector bundle coming from the first order
structure was trivial. Let us justify this. One can check that the vector bundle, F,
on Y,; given by 7() when restricted to leaves is equipped with a flat connection.
This is because sections of p,‘dl Oy,, are constant on leaves. Assuming that the
leaves are simply connected eliminates any holonomy and thus £ is the trivial
bundle when restricted to a leaf.

Restrict now to a trivializing Frobenius chart, U,, on Y,; where F = U, x C9.
Let (x% y?,u/) be local coordinates for E|y, with (x4 = 0,y° = 0) € U,.
Let W C X,; be a neighborhood such that 0 € W and W C p,q (U, ). For all
x® € W and ug € CY there is a unique global section, ¥ (x4, y?), of Elp;l(xa),
with V, (x%,0) = ug. This global section is actually constant when restricted to
a leaf. Thus V, (x9, ¥?) = up and we see that V' (x?, y?) is analytic in x?. (Recall
that all of our transition functions for E are analytic in x%.) Hence V is a global
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holomorphic section of E| o () Choosing ¢ linearly independent ué will give ¢
linearly independent holomorphic sections ¥/ of E| o () which we conclude
is trivial.

We thus obtain that p,' B is globally isomorphic to A®p;,/ 0% over W.

Lemma 2.1. Let D be an integrable distribution on a complex supermanifold, Y.
Assume that the leaves of D, 4 are simply connected and that the leaf space of D,4 o
is a complex manifold, X,4. The leaf space of D is then a complex supermanifold,
X.

2.4. THE SPACE OF SUPER LIGHT RAYS

We now proceed, almost verbatim, along the lines of LeBrun [11], to define
the space of super light rays and to show it has a natural contact structure.
Let ¢ = d(&,w?)|s. We suppose that the foliation of the distribution ker(¢)
satisfies the conditions necessary for its leaf space to be a complex supermanifold.
(We, for example, can assume that the null geodesics of the reduced conformal
spacetime are simply connected and thus apply lemma 2.1.) Let p : 2 —> F
denote projection; then there is a two-form ¢ € I'(2%F) such that p*¢ = ¢.
This is true since for v € ker(¢), Lyp = v U qu + a’(v U¢) = 0. (Here,
U denotes contraction.) Also d¢ = 0 since p*dd = = 0 and p being a
projection, p* : : QUF - Q'Y isinjective. Note that since rank(u¢) = rank (Ug¢),
Up: TF — T*F is an isomorphism (det¢; # 0, j,k =1,...,6 + 2N).

There is a C,-action on .QO‘M given by scalar multiplication ( C C A = sheaf
of superfunctions),

my . (xa’ Hnj’ J aéa) = (-'\ 90], 9?, tfa) .
We have m;¢ = t¢, so for v € ker ¢,
dUMLY = mipuv =tpuv =0.
my. is clearly injective, so m,, ker ¢ = ker ¢ and leaves are taken unto leaves by
m;.

We can then define /' = F/C, to be our space of super light rays. Define L =
F xC/C,; we have then F = L* — {zero section}. F has a standard C.-invariant
vector field X along the fibers. We define our contact form 6 € Q'Y (L)) by
A0 = Xu¢ where 1: F — N and m; (X U¢) = tX U¢. We have for g a local
section of F — A an identification of € with g* (X L ¢),

g (X UP) A (d(a™ (XU M) = 6* (X USAd(XUP)HN)
= 0" (X UGA (Lxd)"*N) = " (X U ($)M),
since

Ly¢ = a’i (€'P)iz0 = ¢
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But

TN (X, Xean) # 0
for any local basis X,..., Xg,n of TF, 50 X U@"3+" % 0 and X is transverse
to the image of ¢ so that * (X U #"3+N) £ 0. Thus 8 A (d6)"2+¥ £ 0 and 6 is
a contact one-form on A

3. The space of normal quadrics

3.1. SOME RIGIDITY LEMMAS

In this section we present several lemmas that will be very useful when we
start to deform normal quadrics. These lemmas are well known in the literature
on deformation theory. See, for example, Burns [4, p. 138].

Lemma 3.1. Let £ — X x U be a vector bundle, where U is an open polydisk
in C" and X is a compact complex manifold. Let E, = &|y.q. and assume
HY (X, E,® E} ) = 0 for a given ug. There then exists a neighborhood of ug, U’,

such that E,, = E, for all u € U'. In other words, €|y = pr* E,, where pr is the
. . pr
projection X x U = X.

The above theorem may also be shown in a particular supersymmetric case.

Lemma 3.2. Let £ 5 X x U be a super vector bundle over a supermanifold. We
assume here that U is a super polydisk in C"4, je. U = (U, /\'(93"’1), where

i is a polydisk in C™. We also assume that X is purely even (no odd coordinates)
and that X x U = (X x Uz, A = /\'(’)f{?‘f(U’d). Let Ey, = E|xxu, and assume
HY(X,E,, ® E; ) = 0. There then exists a (super)neighborhood of uy, U’ C U,

such that €|y = pr* E,, where pr is the projection X x U L)

To prove this, first apply lemma 3.1 to £ — X x U,,. Since £ = pr* E,, for
U small enough, and H' (X, E,, ® E;; ) = 0 we have H'(£,4 ® £},) = 0. Now
consider the machinery of Griffiths obstructions given by Eastwood and LeBrun
[2]. These are the obstructions to extending £|xxu, to all of X x U. Also, if
such an extension exists, one may also measure its possible uniqueness. It is the
second question which we are of course interested in. The machinery proceeds
as follows.

On X x U,4 there is the following exact sequence of sheaves:

0— (A 0%) ® My, 2 GL(r, 4/ (Nil)/*') = GL(r, 4/ (Nil)/) — 0,

where M, ., may be taken to be c. Isomorphism classes of super vector bundles
are given by H! (GL(r, A)) . The associated exact sequence of first cohomology
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for the above exact sequence of sheaves is
H'(N0%) 9 €,y06) = H (GL(r, 4/ (Nil)/*')) - H' (GL(r, A)).

The uniqueness of extension at each level of nilpotency is thus given by

LA
HY (0% R €,0€E).

But as stated before, H' (£,, ®& »;) = 0o that all the obstructions to uniqueness
vanish.

3.2. DEFORMING SUBMANIFOLDS OF SUPERMANIFOLDS

In this subsection we show how a rigid classical submanifold X!° of a super-
manifold Y """ may be deformed through a family of submanifolds each with the
same normal bundle as X"1°. This argument is a simplified version of LeBrun’s
work [14], which deforms a (not necessarily rigid) classical submanifold of a
complex supermanifold. The more general work of deforming submanifolds X"
in Y"I" has been done by Weintrob [21].

Let X C Y be a compact complex submanifold of a complex manifold, and let
(Y, A) be a complex supermanifold. Let T C A be the nilradical (i.e. the ideal of
nilpotents) and let E be the bundle on Y defined implicitly by O (E*) = I/1°.
The normal bundle ¥ of X c (Y,.A) is by definition the graded bundle v =
vy d vy, where vg = (TY|x)/TX, and v| = E|x.

Theorem 3.3 (LeBrun). Suppose that
H'Y(X,0(TX)) = H(X,0(v)) = H' (X,0(v®v*)) = 0.

Then there is a “complete, locally trivial, analytic family of submanifolds near
X, biholomorphic to X and with normal bundle v”, whose tangent space at X
is HY9(X,0(v)). More precisely, there is a complex supermanifold (W,B) of
complex bidimension (h°(X,0(vy))|h°(X,0(v))), a submersive proper epi-
morphism

m:(S,C) - (W,B)
which is a fibering of complex supermanifolds, and a map of complex superman-
ifolds

u:(S,¢)— (Y, A)
which is an embedding of =1 (¢t} = X into Y with normal bundle v, = v for all
t € W, such that X = u(n~'(x)) for some x € W and such that the induced
maps

TxW — HY(X,0(1)), Fo = HY(X,0())

are isomorphisms. Thus we assert the existence of 4 manifold Z = (Z,B) of
bidimension (h°(TY/TX)|h°(E)), a supermanifold F = (F,C) of bidimension
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(h°(TY/TX) + r|h°(E)), where r = dim X, and a mapping diagram

F
B
7 N\
Y Z

such that for some basepoint zo € Z one has X = Brya;; (20). F is a fibre
bundle over Z, with fibres X, such that the fibres embed into Y under B with
normal bundle v, = v for all t € Z. Moreover, this family is universal in the
sense that any diagram
F
< N\
Y Z,
is induced by a map Z | — Z in some neighborhood of the base point.

Proof. We begin by noticing that H! (X, TY/TX) = 0 by hypothesis, so we may
apply Kodaira’s theorem [9]. This gives us a reduced family

F
b

a
VRN
Y Z.

Since H! (X, TX) = 0 by hypothesis and the statement is local, let us assume
F = X x Z where Z is a polydisk in C**®). Since H! (X,v ® v*) = 0, we have
H' X, ipev}) =H' (X,yyov)=0.

Thus, by lemma 3.1 of the previous section, b*E & pr*v, and b*TY/TX =

pr* vy (j.e. the image of a fiber X x {z} in Y has normal bundle vg).
Let E* — Z be the vector bundle given by
O(E*) = a®(O(b*E)) = o2F°™)
by the Kunneth formula. Let B = O(A*E) and € = O(A°a*E). The natural
pull back map
a'O(N'E) - 0@ \'E) = \' o2"®

then defines amap a : F — Z, where F = (F,C) and Z = (Z,B). We now
need to define a map f : F — Y, i.e. a homomorphism g*: b~'A4 — C. We
build this in the following inductive way: let N C C be the nilradical, and let
¢m = ¢/N™+1 We then have the exact sequence of algebra homomorphisms:

0 — Homg (b7 4, /\m(N/NZ)) — Hom (b1 A4,C'™)
— Hom(b~'4,¢" V) 0.
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But
Home (b~' A, A" (N/N?)) = O(b*E @ \"a*E)

Or(b*E) o \" 02"

and

H' (O E® \"a"E)) = H'(OF (pr* v) ® A0 ) = 0
by the Kunneth formula and the assumption H' (O (v;)) = 0. Hence every ho-
momorphism extends. Finally, by lemma 3.2 of the previous section,
B*(TY)/TX = pr*v, so that we indeed do have a family of normal submani-
folds.

Completeness of the family follows from exactly the same argument as given
by Kodaira [9, pp. 158-160] building the map Z, — Z by higher and higher
powers of the odd variables of Z, . Note that we need not be concerned about
convergence since this is a power series in nilpotent variables which thus termi-
nates. O

3.3. DEFORMING NORMAL QUADRICS

Now proceed in the opposite direction of the previous section, namely con-
struct a superconformal manifold from its space of super light rays. We have the
following:

Theorem 3.4. [f V32N js a supermanifold with contact structure, then the space of
“normal quadrics”, that is, quadrics Q, = P xP,, embedded with normal bundle

0(0,HeTY & O(LO)RTY @ TP|ERO(~1,-1),

is a supermanifold M*1*N with superconformal structure. (Here, TV denotes the
N-dimensional trivial bundle.)

Proof. Let the contact structure of A be given by the line bundle valued one-
form, 6. Let D be the kernel of . There is an exact sequence

0-D—->TN L0,

where L is the contact line bundle. L when restricted to a “normal quadric” is
the O(1, 1) line bundle.
The contact form is normal to each normal quadric since

J*0e H(Q,2' (L)) = H*(Q, (0(-2,0)® 0(0,-2)) ® O(1,1)) = 0.

Thus TQ c Dlp.
If we define D = D|yp/TQ then we have the exact sequence

0—D—N-Ljp—0.
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The exact sequence defining D,
0—-TQ—-D|p—-D—-0,
can be rewritten as
0—-0(2,0020(0.2) = Djp
- 00O TaO00. )T 2O, -1)2O(-1,1) - 0.
We can check that H!(Q, TQ&D*) = 0and therefore this exact sequence splits:
Dip=TQ®D.
Rewrite the first exact sequence, restricted to Q as
0->TQeD—~TN|p—Llpg—0
or
O-TiQeT,Qenendvdr,—TN|g— Llp—0,

where TQ; = 0(2.0), TQ, = ©0(0.2), 5, = O(l.=1), gy = O(=1,1), v; =
0(1,0)eT,and v, = (9(0,1)8) T*. Consider
Dylo: N (TQeD) - Lig,

where @5 = [ , ]/D is the Frobenius form of D ¢ TN. Locally, @y = d@
and is thus of full rank everywhere since 8 A (8)"2+~ £ 0 anywhere. We have

Dulg e HO(Q.(Q1Qa2'QoD @ \*D*) o Lp)
= H(Q.2°Qe LIQ) @ H(0.2'Qe D o Ljp)
@& HY(Q,\’D* o Lip)
= HY(O(=2,-2) 2 0(1,1)) & H*({(0(-2,0) 2 0(0,-2))
(O, - eo0(-1,1)e0(-1,0)T 2 0(0,-1)T)0(1,H})
& HY(A\'D" o L|p)
= HY(O(-2,0)0(1,-1) 2 0O(1,1))
& H°(0(0,-2) 2 0(=1,1) ® 0(1. 1))
S HY(O(,-1)0(=1,1)0(1,1))
@ HY(O(1,-1)0(-1,0)T* @ O(1,1))
®HY(O(-1,1)0(0,-1)T®0(1,1))
2HY(O(-1,009T 00, -1) T 90(1.1)).
Thus
Prlo = Plroey, + Plrosy + Plysn,
+ Dlyou + Plyar, + Plusy, -

The first two terms are each nowhere zero, otherwise @|p would not have full
rank everywhere. The @|,,q., must have full rank everywhere, otherwise we may
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take o € ker (P|,q0, 1 1 = 1 L|p), withg # 0. Then oUDP |01, = oUP |y #
Oand g~ (cU®|y,0u,)q; is in the kernel of @ x| . [Here, g; € I'(Q, TQ;) is such
that @x{p(g;) = 1 for some local trivialization of #} ® L|p.] This contradicts
@, having full rank everywhere.

Also note that

HY(Q.0(-1,000T*20(-1,00 9 T* 9 0O(1,1)) = 0,
H°(Q,0(0,-1)@TR0O(0,-1)T®0O(1,1)) =0,
Hence @|p:, = Pz, = 0.
Now consider the long exact sequence
0 — H%(Q,D) —» H%(Q,N) — H°(Q, L|o)
— H'(Q.D) = H'(Q,N) = H'(Q, L|p) — -

Since
HY(Q,L|p) = HY(Q,0(1,1)) =0
and
H'Y(Q0,D) = H(Q,0(1,-1N)@0(-1,1)20(1,0) T & 0O(0,1) ® T*)

=0,

we can conclude that H'(Q,N) = 0.

We leave it to the reader to show that H! (Q, N® N*) = 0. We also note here

that
HY(Q,TQ) = H'(Q,0(2,0)® 0(0,2)) = 0.

By the deformation theory examined in the first subsection, the space of
normal quadrics is then a supermanifold, M, with TMy = H%°(Q,N), and
dim(TM) = dim(H°(Q,N)) = 4]4N. We also have the total space of this
family of quadrics, F®*N and the diagram:

F
p =«
< N\

N M

where the dimensions of the fibres of p and # are respectively 1|2N and 2. The
fibres are also transverse to each other. F is then a P, x P, fibration over M.
h(p.
Now F graph(y i N x M. We thus have the exact sequence
0—=TF - pTN@n'TM — Np — 0.

Let TQ = TF/M =ker(n, : TF — n*TM). We then have, since the fibres of
p and =© are transverse to each other, that 7Q C p*TA and hence

0-TQ0% p*TN - N0,
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where N = p*TN/TQ.
We also have
0—p*D— p*TN — p*L - 0.
Let U be a small enough polydisk in M so that we have
a N (U) = (P xP) x U
With such an identification we have the projection
pr:P xP; x U —P; xPy.
Using lemma 3.2, we can then write
N =2 prrO(1,0)Taprr0(0,1) @ T" @ pr' TP;|g,=p, xp, »
TQ = prro(2,0)epro(,?2),

and p*L = prrO(1,1).
As before, we have p*8|rg = 0 and thus 7Q — p*D. This gives

0—-+D—>N-p'L->0,

IR

R

where D = p*D/TQ . Using lemma 3.2, we will also have
D=prr(0(1,00eT200, )T 0(1,-1)20(-1,1)) .

Note that we also have that the exact sequence defining D splits so that D = TQ&

D. [From the above one may define; = pr*O(1,-1), 5, = prO0(-1,1), v, =

pr'O(1,0)® T,and v, = prr@0(0,1) ® T* withof course D = ;& n, & v;® v,.]
We have from the exact sequence

0—=D—N=p'L—-0
and writing @ = P, x Py, the long exact sequence
0 — HY(Qx Upr(0(1,0) 7)) ® H(Q x U,pr* (0(0,1) ® T*))
— HY(n="(U),N) — HY(Q x U,pr*(O(1,1))
—~ HY(QxUpr(0(1,00T)) ® H(Q x U,pr(0(0,1) @T*)) — -+ .

Applying the Kunneth formula and the fact that U is a polydisk, the last two
terms written are zero. Hence there is the exact sequence of sheaves over M,

0—-S,®E®S_-QE*-TM->5,05_—-0,
where
S, (U) = HY(Q x U,pr"(0(1,0)), S_(U) = HY(Q x U,pr* (0)),

and E(U) = HYQ x U,pr*(T)). Writing TM =S, E, ;M =S5_Q® E*,
and TyM = S, ® S—, this exact sequence is

0= TIM®T,M - TM — TyM — 0.
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The Frobenius form @y : A2 (T)M & T,M) — T,M is defined by
Oy (X,Y) = [X,Y)/TIMT,M
forXe I'(T)M)and Y € I'(T,M). We wish to show
Q)MI/\ZT,M = cDM,/\ZT,M =0
and that @;y| AT, MOT.M corresponds to the convolution
S, QEQE"®S_ -S,@5_,

in order to show that A/ has a superconformal structure induced from A

We have
0-TQ— TF L a*TM =0

! p. Lo

The map p. actually provides an isomorphism between p~! TM (U x Q) and
HY%(U x Q,N) for U a small enough open set in M. We may also assume that
F=UxQandthusthat TF = TQ® TM. Wehave p,[X,Y] = [p. X, p. Y]
for X,Y e '(p~'TM). Thus

(TiM, TiMlmod T/ MeT M
corresponds to
v+ TQ, v+ TQl mod D.

This is just p*DPu((,,+ Q)3 (1 + TQ)» Which we have already calculated to be zero.
We can conclude that

(TIM,TIM]cTiMeT,M.
Now consider [T;M, T;M ] mod 7T, M. Under p. this corresponds to
(v +TQ, v+ TQlmody, @ TQO.

This represents a section of

4] 2 * *
H™(U x Q, (/\ W eT 0N (mendv)).
Since
vy =prro(,00T,TQ =prr0(2,0)®pr* 0(0,2),
D/(vyeTQ) 2prrO(l,~-1)epr0(-1,1)epr(0,1)® T,
we have that this cohomology group is zero. T; M is thus an integrable distribu-
tion. Similarly, 7, M is integrable.
Also note that if X € I' (T;M), X # O then under the correspondence given

by p.,

Dyirmerm(X,0) = p*Pulyen (X,0) # 0
and similarly for Y € I' (T, M) .
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Thus
Dylrmerr € H(Qx U,0(-1,008 TR 0(0,-1) T2 0(1,1))
= HY(QxUT®T")
with full rank and by the definitions of §,,S_ and E, we see that @y, acts via

the contraction map
S, QEQE"®S. -85, 0S5_. O

4, Extending conformal structures

4.1. THICKENINGS AND POISSON STRUCTURES

We present in this subsection the definition of thickenings of complex mani-
folds given in Eastwood and LeBrun [6]. We will also present the definition of
a Poisson thickening given in LeBrun [13].

Let X be a complex manifold. A thickening of order m, X, of X is a ringed
space, (X,On)), where O, is a sheaf of C-algebras, locally isomorphic to
O(t)/t™+1, and which satisfies O(,,)/ Nil = O, where Nil denotes the subsheaf
of nilpotents in O, . The tangent bundle of X|,,) may be defined as the sheaf

TX('") = Derc (O(In)a O(m) )
and the cotangent bundle may be defined as the sheaf
QlX(m) = HOH’I(TX(m), O(m)) .

Now let X be a complex contact manifold. Let L be its contact line bundle. The
total space of L — O, has the structure of a Poisson manifold, i.e., it is equipped
with a global bivector field 7 given locally by

T=1 t6+2-(9 /\(9 +Za/\‘9
= \'ar TP ) " a0 T 759 ey
where ¢ is the fiber coordinate on L and the other coordinates are contact coor-
dinates lifted from X. 7 defines a Poisson bracket on L,

{,}:0-0

given by {f,g} = 1(df,dg).

Let 7 C O denote the ideal of functions vanishing on X = 0; ¢ L. We have

{Tk,Tl} c Tk+l .
If we define O, = O/T™*!, then { , } gives O,, the structure of a sheaf of
nilpotent Lie algebras. Moreover, since C is contained in the center (with respect
to {, }) of Om, On/C becomes a sheaf A, of nilpotent Lie algebras. We
define
Om = expAm,
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thereby obtaining a sheaf of nilpotent Lie groups. Now there is a natural injective
map

Om-1 /C — Der(Oy,)
given by f — {f,-} and this realizes A,, as a nilpotent subalgebra of Der(0,,) .
Therefore G,, is a nilpotent subgroup of Aut(O,,) .

Isomorphism classes of thickenings of X are precisely given by elements of
H'(Aut(O,;)) . We have therefore the following definition of a Poisson thick-
ening: A thickening of X of order m is said to be a Poisson thickening if its
isomorphism class is in the image of

Hl(X,g,,,) - Hl(X:AUt(Om))-

4.2. “SUPERFYING” AMBITWISTORS

We now show that every space of null geodesics can be imbedded in a super-
manifold of dimension 5|2m, for m < 4. Let A be a space of null geodesics
for some spacetime M*. LeBrun [13] has shown that A has an extension to
a Poisson thickening, N, of order m for m < 4. If the Bach tensor of M*
vanishes, then A has an extension to a Poisson thickening of order m = 5. If the
Eastwood-Dighton tensor of A/* vanishes then A has an extension to a Poisson
thickening of order m = 6.

LeBrun also constructs a supermanifold A" from A"). Let us recall this
construction. It is (p. 66 of LeBrun [13]):

Let Oy (1,1) be the “divisor line bundle” of ' C A, The line bundle
O(m) (1, 1) has a canonical section ¢ vanishing along N. Let O,,,(0,1) and
O(m) (1,0) be extensions of L. to A" and let T be a complex vector space of
dimension m. Then

O (1,1) & A\ [T © Oy (=1,0) & T* © Oy (0, 1)1 ® Oy (1, 1)
has a canonical section ¢ = ¢ + id where
ideToT c N (TeT).
o generates an even ideal 7 in
AT ® Oy (=1,0) 8 T* ® Opm) (0, 1)1,

i.e., for every local trivialization of O, (1,1) o gives a section of this bundle
and changing trivialization just multiplies this section by an element of O, .
Thus

NIml — (N,/\'[T®0(,,,)(—1,0) ST ®O0wm(0,-1)1/T)

is a well defined Z,-graded complex ringed space. Moreover A/["! is a complex
supermanifold, i.e., it is locally isomorphic to @(A°C?"). The nilpotents of
O(m) have become the nilpotents of A*(7 @ 7*)!



36 A. McHugh / The space of super light rays

4.3. THE CONTACT STRUCTURE OF L7, .\

We shall first show that a contact structure exists on the total space of the line
bundle L+(m and then we will be able to show in the next section how this

“descends” to our supermanifold A2

We may locally lift a set of Darboux coordinates, ¢/,p;, on N to a set of
coordinates g/, pj, t on NV, . Let f,p be such that exp(tU df.s) is the change of
coordinates on N, between two open sets U, and Uy . Here 7 is the exelissic
form given by

r=t[(t£+2pji>/\,i+2—a—./\i
ot apj aq° dq’/  Op;
We have on a coordinate neighborhood, Uy, the one-form
05 = dag + pp,daj.
Consider how this changes under a coordinate transformation, i.e.,
exp(tUdf,p)*0
If we write X,p & tUdf,p then
exp(tUdf,p)"0p = exp(Lx,,)0p.
We have (dropping the use of the subscripts « and £) that

o= 19 of
Lx6 = t0q00+td(f+t )

We have then:

Claim 4.1.

exp(Ly)l =

- —

(Srw)e

N— k=1
+ ( Xk z)) ( X —(f+ taf > mod ¥+,
c =0

ESS

lLe.,

~ ] —

exp(tUdf )8 = ( exp(X)(t)) 6 + exp(X){(t)d (F,) mod tN+1,

—(r+%).

where

N—lX
=3k
k=1
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Note that if /(©) has homogeneity zero in  then

f(O) f(O) _
t +az t =0

To prove the claim, one may first prove by induction

Xk(t) dXig

N YN AN HRAS

Ly = X (e + E G
k+j=N-1

where g = f + t8f/0¢. This proof is left to the reader.
We thus see that

N
Z/% = e)(ptﬂ6+epr(t)d}‘+ mod tV+!.
Hence on an overlap of two open sets U, N Ug , we have
t .
(66)aﬁ = 90, — W(exp/ nﬁ) 95 = tdf+nﬁ .

Thus §(tdF,) = td(0F.) = 0. We see that
(6f+ )aﬂ). mod " = ¢,

a constant on triple overlaps. We consider the part of this equation with zero
homogeneity in ¢. This constant must be cohomologous to an integer, since the
left hand side is now (J /4 )ap, Where exp(fiap) are the transition functions of
the line bundle L, . We conclude that exp (F, .4 ) form transition functions for a
line bundle over NV{,,—1, which is an extention of L . There is already a unique
extension, Ly), of L, over AV{,,), which gives a unique extension over N,,_) .
[Recall that L, is just notation for O(0, 1).] Thus we may extend exp(Fqp)
to be transition functions for L)+ .

Let {0.; } denote the zero section of L} One may now check that the

(m)+ °

twisted one- form on L{,,, — {0 L(,..H}’ given locally by 6 — ts7'ds, , where
s+ is the “coordinate along the fiber”, gives a contact structure on L7,,, —
{OL ..} with the contact line bundle being the pull back of O (1,1) from

Nimy - Henceforth we write L%, for L}

+{m) (m)+ {OL(‘mn} :

4.4, THE SUPERCONTACT STRUCTURE

We now show how the contact structure constructed in the previous subsection
will “descend” to our supermanifold A312”". Consider the superthickening

‘C:.(pn)[n’] - (£+(,n),A (o(m)(_l)O)®T®T*®o(m)(0a_l))~

Recall that 0(,,,)(0 —-1) =2 Oy on L
sections

* (m) - Choose m linearly independent

ei € F(O(m)(l,o) ® O(,,,)(—I,O) ®T) C F(O(m)[m](lao))
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and m linearly independent sections dual to the above,
e € F(O(nx) (O, I ) Y O(m) (O, -1 ) @ T‘) C F(O(m)[m] (09 I )) .
Note that
O(m)[m] (Ov 1) = O(m)[m]

on L% ) (m) 50 that e'de; makes sense as a global section of

£
+(m
Omm (L, 1)@ Ql"»“:Hm)[m] .

(NOIC that O(,,,)[m] (1, 1) = O(,,,)[,,,] (1,0)) on ‘C:-(m)[m] )
Let s, be the coordinate along the fiber of £% ) and s_ a local section of

+(m
O (=1,0). Also let ¢' = s_e' and y; = s.e; be the odd coordinates on
LY (mypm - SInC€ LYy 18 SPLIL, 6 = ts;'ds, is a well defined twisted one-

form on it. We have then

0 —ts7tdsy + s (s_e)d (s7 s ei)
= 0 —tds7'dsy +s2'¢'d (sT wi)
= 0 ~ts7'ds, —sZ\s 2 wids, + sZ'¢ls T dw
= 0 —ts7'dsy —sTlsT o wisT dsy + 52 s dwi.

When pulled back to £7, (,,; = {t + sZ's3'¢"y; = 0} thisis 0 + s='sy'¢~'dy;
and thus descends to an O, (1, 1)-valued contact one-form on A, .

4.5. EXTENDING CONFORMAL STRUCTURES

A complex conformal spacetime is said to be civilized if its space of null
geodesics forms a complex manifold. It is said to be reflexive if it is the space of
normal quadrics for its space of null geodesics.

Corollary 4.2. Let M* be a complex conformal manifold. Assume M is civilized
and reflexive. M then has an extension to a complex superconformal manifold
M4 m < 4 ifthe Bach tensor vanishes M has an extension to a superconformal
manifold, M*20; if the Eastwood-Dighton tensor vanishes, M has an extension
to a superconformal manifold, M4,

In general, if the ambitwistor space N has a Poisson thickening of order m,
then M* may extended to a superconformal manifold M.

Proof. Let M be the ambitwistor space of M. By our assumptions for each m
and our previous results, > has an extension to a supercontact manifold A/3127.
Since M is reflexive, it is the reduced space of the space M4/ of normal quadrics
in A/312m Af4l4m by its construction is a superconformal manifold. 0O
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(Note: For m < 4, there were no special assumptions, beyond civility and
reflexivity, on our spacetime M*.)

This result is now a fully curved version of the linearized result of Chau and
Lim [5].

5. N = 3 SSYM equations and integrability

5.1. INTEGRABILITY ALONG SUPER LIGHT RAYS

Recall that a superconformal structure is partly given by the exact sequence:
0-S,@EdS_F -TM->5,®5_--0.
Choose a local splitting of this exact sequence so that
TM=2S5,05.9S,9E®S_SE"*.
We assume that our connection is given (locally) by

d+A=d+ (4

aa?’

Waiy W% ) .

Integrability of this connection along super light rays is by definition the van-
ishing of the curvature of this connection when it is restricted to a super light
ray. This implies that the curvature has a special form. Consider the (local)
decomposition of 22M as

ez NsieEye N (SEeE)e N (S, 08)
OSL LS QS QE" eSS, 95295 QE®S,QE"®SIQE
= /\2S*+ ®/\2nE* @ 0'S; © ©'nE” @/\ZS: ®/\27zE
80’1 g omE® \'St 9 08, @ \'S; s 0l8?
o \N'ST S 9 E ©0’S; 08! o E*
o NS oS, cEea’St oS, SEaS, 9E 9S8t oF.

The tangent space of a super light ray is generated by super light vectors which
are of the form

Pevt yree +vhoe,

where the y* and v# are fixed sections of S, and S_ (except for scaling), and
the e’ and e; are sections of £ and E* that are allowed to vary freely. The
vanishing of the curvature F4z on the super light ray implies for example that
Fproe nf ®el) = 0, ie., Fp has no component in ®2S% ® @2E*, and
similarly for other components.
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We thus obtain
2 2 2 2 2
Fpe NSioNnErea N's* o NnEa \'S; 90’S*
2 2 2
o A\Sree’Sieo \NS; 05 0E s \'S1®S, SE.
Thus
Fig = Wijeap + WUe s + fip€ap + fapig + Xai€ap + Xdu4-

(This notation now coincides with Harnad et al. [7].)

5.2. EXTERIOR DERIVATIVES AND CONNECTIONS

We shall now define (at least locally) a certain operator on £7Af; it is an
“exterior derivative”, 4, that is similiar to the regular exterior derivative, d , but
such that 42 # 0in general. The N = 3 SSYM equations will be written in terms
of components of 4 . 4 actually comes from the nonintegrability of /M & T, M.

Once again, consider a local splitting of the exact sequence

0- QM- Q' M-Q'MaQ'M -0

so that
QM=QQMeQMaoQ'M.

The Frobenius form @ : Q] M — Q' M ® Q! M is then well defined (locally) as
a map from QJ M to Q2M. Define 4 : QI M — Q2M by

4d=d-9.

On Q'M o Q'M define 4 : QM & Q'M — Q2 to be 4 = d. Also define
4 f = df for superfunctions f.
Now extend 4 to all of 2°M by the Leibnitz rule:

AW Awy) = (dw) Aws + (-1 o Adw,.

We may consider connections on vector bundles coming from this “exterior
differentiation”, D: T'(E @ Q° M) — I'{E ® QP+ M), where

Dicew)=D(o)Aw+ o3 4(w)

forocel'(E) andw e I'(2°M).
Let 4,; = TI/OA,Ai =1m,04 anddad = mgod.

Proposition 5.1. [4,;, 471 = _¢f£f4ﬂﬂ.

Consider @ as an operator on 2°M by ® =0 on Q'M and Q'M, ®f =0
for / € I'(A), a superfunction, and extend to all of £2°M by the Leibnitz rule.
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From this, it is clear thatd = 4 + @ on all of Q°M and that @2 = 0. Since
d? = 0 we have (4 + @)? = 0 and thus

2= P4 -AD
or )
(Ao + dai + 4)2 = ~@4 - 4D .

Let kg € I'(QPM), |A| = p, where A1sa multi-index, and elements of 4 are
indices of the form (aa), (af), and (). Consider both sides of

(doiy + dai + A1)y = — (@4 + 4D )k 4

and the terms in each which have values in QM - Q! M - Q! M. We also assume
that @ corresponds to convolution so that d’“/ = 5V6} 8/ and thus 4, ((D”' ) =
0. Hence

(Aaidc{ + Aidni)’cA = -4, g+ 4, Pry—4,,Pry

aal TP

— —ig.

aad ))

For a connection (A, Wai, w’,) define

=4+ A4

an aa?

[e70 %4

Qni = Aai + Wi,
Jo— 4J J
g, =4, + w,.
For v4, a section of our vector bundle, we have

FUa = (d+ (Aa(pwalaw ))(d+( ﬂﬂawﬂl\aw ))U

((Daa Qais 01) + ©FF1) (Dyv° + Qpiv” + va”)

aal

= [Dos Dy 10° + [Dyg, Qpi10° + [Dys, Q) 10°

+ [Qair O 10 + [Q4, Q)10 + [Qar, Q) 107 + ®/ip,;

aal

If the connection is integrable along super light rays, we obtain
[Qui» Qs 1 = Wijeap, | L,,Qj Wijf[-,,;,
[Doir Qp5] = Xij€aps  [Doar @51 = xieap,
(Quir @41 = ~024D, ;.

aal
Note that the last equation is true, at first, only for sections of E and not for
sections of £ ® 2°M but by the previous calculation it can be extended to
E @ Q°* M : By the above
3 : . ik
Goj (05) + @5 (wa)) + [@aj, %] = 704,

aoj
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and thus

vk k k k k
—N Dy — Wi daj— WA + 05 + 0

aaj

[4oj + ©aj, 45 + @]
= —@'¥p .

acj U rE
on all of £ ® 2°M. Here we assume that the Frobenius form corresponds to
convolution and D, Qai, Qi are written with respect to such a basis. The above
equation is just _ A

[Qaia Qi] = —'5le0(& .

Using the Bianchi identities one may define 4, and 4; by

.
QoiWik = €jkda,  QIWIT = €;0hs .

5.3. THE EULER OPERATOR

We define, only locally, the Euler operator by
D =6%3/90% + 678/96¢.
Recall that ‘ ‘ L _
Qui = gl a5 + wai, QL = g{'{’j}A;} + w!.
To describe D in terms of Q,; and Qi we shall need the following:

Lemma 5.2. There are coordinates x4, 0", 6;‘5 such that

g% = I’/ mod (Nil)?, ggj". = I/j mod (Nii)?.

1

Proof. First form new functions
gl =gl (x.6.00, &’ =g’(x.6.0).

More specifically, since x{ = x? + iH9,
g8 (x,6,,6,) = gl (x +iH,6,,0)

2
3‘i (x2.0, 0)H — _9°& pap ..

—— ’a 1
= g(x%6,0) + 19y 29xa9xb

The above sum is finite since H? is nilpotent. Define §;€ similarly. Clearly

$38 =0, augl =0,
Now note that , . o
g'8i = *ﬂjgm’ 9;/3 = g‘,(lﬁg?

[43]

are well defined odd coordinates such that 46’/ and a’()}’} span QM and Q' M
respectively. (Recall that Q,ErM are defined as quotient bundles.)
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Since

d6'% = d(glee + g% de° = g d6* mod (Ni)2-Q'M + Q{M,

al

we have _ _
do'" = 52 @ e/ mod (Nil)?- Q' M.

If ¢ is the isomorphism from Q' M with basis d0'%/ to S, ® E* with basis s ®e'
then it is clear that A _

g% = 1%/ mod (Nil)?.
Similarly

g = 1’ mod (Ni)?. O

Using the coordinates 6’ and 9}5‘ from the lemma and dropping the use of
the primes, we can now write the Euler operator as
D = 0%da; + 084 + USd s + VOidi + V4L + 0% T + 60T,

where Ue® € (Nil)?and 1'%/, V;® € (Nil)*. The I},; and I/ are — (the “Christoffel
symbols” of 4,; and Ali). Also define

D = 04, + 694!
Note that if we impose on a connection the transverse gauge condition
0% wai + 6% =0,
then
D = 0%Q.i + 670; .
Also note that D = D + T, where T is an operator which strictly increases
nilpotency and is, of course, independent of any particular connection.

5.4. EQUIVALENCE OF DATA

We wish to show the equivalence of the following three types of data (see
Harnad et al. [7] or Schnider and Wells [19]). We will be working thoughout this
section over a neighborhood of M for which we have a choice of supercoordinates
and a trivialization of our vector bundle. '

i) Integrability along super light rays. The superconnection (4,4, @Wai, a)f1 )
subject to the constraints:

(Quir @p;1 + [Qpir Qail = 0,
AR CAARLE
[Qaiy @] = ~6/ Do
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and the following “transverse” gauge condition:
6%wgi + 0wl = 0.
Note that the first two constraints are equivalent to
[Qai, 0pj] = €apWijs 1L Q)] = €53 W

for some superfields ;; and W*/. We have thus already shown that a connec-
tion with curvature vanishing along super light rays satisfies these constraints.
Likewise the constraints imply, via the Bianchi identity, that the curvature F
has the form written before for integrability along super light rays.

We also note that the “transverse” gauage condition may always be validly
applied, i.e. given a connection, we may always find a second connection gauge
equivalent to it which satisfies this condition.

ii) The superfield equations. ~ The superfields {44, das A4 X0 X 10 Wi W'}
(where W; = €, W/* and W = e'/*W};), subject to the superfield equations
written below, with the rd dropped. In addition, there is a certain set of relations,
called the D-recursions, which are defined in terms of D . The D-recursions:

DWik = €ijx0"%a + 051 — 05X jas
DWi = elikgia, + 0/oxk — ok,
ﬁAa,é = —ea,gﬁ“’xm; + 6650? i
Diis = 2678D piWii + 267 1.5 + 268 4 [ W7, Wyl — 16%e 4 [WH, W],
Dyl = 26D ;Wi 4 208 f5 + 207Peqg [ Wi, Wk] — 0% eop [ Wi, WH],
Dhe = 36P€pa[Wij, Wiy 1eF! + GfeijkDaﬁij,
Dz = $6%e, [WI, WHlej + 675D g Wk,
Dfop = 307€3# (€5, Dosit iy + €arDpa i3] + 011D it b + D i i1,

Dfp = 367 (€4, Docs + €D, %1 + 307Dy 5 + D,ys ial -
‘iii) The (reduced) field equations. The component fields {4, 4> Ard as Argao
X! oo Xrd io Wea i» WL} subject to the (reduced) field equations:

€D,y preap + Wpgipp Wigl = 0,
EdﬂDrdadlrdﬁ + [X;l:da’ I/Vrdi] = 0:
€D, iXiap + Wpgips Wrarle* = A, W31 =0,

€ Dryoika jp + Whaoo Wik = [hraw Wrajl = 0,
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€D,y 0sD,ygiWeas + AWl Weaj 1, Woail = LW,y Wea i), Woa j1}

&f a j k
+ € B{erjda'lrd/}} - %Gijkf ﬂ{X:‘da’erﬂ} =0,

€€ D goiDrq i Wiy + 2 UIWoais W1 Wiy 1 = [Wea i Wiy 1, W1}

+ GQB{X}Ida’Ardﬂ} - %Gijkfaﬂ{)(rdidaxrdk'} =0,
B

¢ ay k
E‘ﬂDrdo/?-f;‘dTﬂ t+ € )Drd)vdf;d,‘r/} + {er,,,x,dk,;} + {'lrd)'a'lrdli}
+ Wi D,y sWoai] + (Woain D,y g Wis] = 0.
Proof. Obviously, ii) = iii) is just trivially applying reduction. The proof of i)
= 1i) follows through just as it is done in Harnad et al. [7]. We repeat their
argument here.
We first have the superfield curvature tensors f, and f, § defined by

[Dacs Dyl = €;5/ap + €aplyp -

Using the constraint equations and the Bianchi identity, we obtain superfields,
Aas id,x;}, X  satisfying

OuiWjk = €jjkhas (1)
QLW = e, (2)
(Qais Dg; 1 = €apiy» (3)
[Q} Doj] = €iXas (4)
and also the equations
QWi = St —0itjar QWY =[xl -dlxi, (5)
QuiX jo = 2D, Wij, Qix)=2D, WY, (6)
Qltia = 20015 + 26, IWK W] = Jegy 8] [WR, Wit ], (7)
Qpix) =26/ fup + 26ap [Wiis WN] = Jeap 6] Wi, W1, (8)
Qyifop = %Edﬂ [EﬂrDade/} + Em’DﬂdXi/i]’ (9)
Ovifyy = %[D,@XU; + Dxials (10)
Qi fas = 3™ L€ Daikp + €aiDagp) (11)
Qlfop = 31Dujxp + Dgixal- (12)
Applying Q,; and Qi to eqgs. (1) and (2) gives
Qaidy = EijkDu/jVij’ (13)

Qaitp = Leap [Wij, Wiy 1€, (14)
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Qid; = g5 W, W eju, {13)
Qitp = " Dy Wi. (1)
Applying
Daéz = %(Qang + Q:;Qai)

to Ag, 4 B xé, Xjg and using eqgs. (1)-(16) gives the ﬁrs} four superfield equa-
tions. Apply Qp; to the second superfield equation, Q! to the first superfield
equation, and @,; to the third superfield equation, to give respectively the last
three superfield equations. ) '

Apply D = 6%Q,; + G?‘Qc'; to Wj, W"’,xiﬁ,xé,lmld, faps f;; and use egs.
(1)-(16) to yield the D-recursions. We note that we have

[dpi, o] = [4%,4,4] = 0.

(This follows from 42 = —4® — @4 or from a local calculation where the
“Christoffel symbols” of 45; and 4 ;3 respectively cause cancellation of [gg;, 3, ]

and [qlg,am-,] .) Thus
[D,D.] = DAy, -
This then gives
DAy, = 053156 pa + Gfxc",eﬁd.
Applying D t0 Qui = dai + Wei and Q! = 4! + ! gives us
(1 + D)wai = 245087 W, + 2074,

o’
(1 + D)l = 2¢.,00Wi 4 20%4 ..
a Q, aQ

B-J

- In proving iii) = ii) we must first take the D-recursions as defining Air Aas
Ao XL X 10 Wi, W inductively on their nilpotency. We note that this is possible
since D = D + T, where T strictly increases nilpotency and is independent of
the connection. Next we are trying to show that

G=0,

given that G,; = 0 where G is the left-hand side of one of the superfield equa-
tions. It is actually a system of equations
k
G = 0 s
k . 0 1 n—1 0
where G € (Nil)k. Assume G =G == G = 0 where G = G,y. Now

n n ’_L
DG = nG = (DG).
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Also

n
—N— u <n i <n . <n i <n
(DG) = 60°Qui G + 00QL G + U4, G + V"4ai G
a 40 St aip St it
+ V04,6 + 004G + 01T G,

<n | . <n n
where G is G for some / < n, i.e. zero, and G is just G. Thus

n

A

—N— g ; N
(DG) = (%0.,G + 0}‘Q(§G).

n

The D-recursions of Harnad et al.[2] are valid as D-recursions by just replacing
D everywhere with D. We can use the D-recursions in exactly the same manner
as Harnad et al. |{7] use the D-recursions, to show recursively that if G is the
left-hand side of one of the N = 3 SSYM field equations then

n n

n —N— S Om
nG = (DG) = (DG) = 0.

This completes iii) = ii).
Now turn to the proof of 1i) = 1) . Similarly as in Harnad et al. [7] we have,
assuming i) (integrability along super light rays):
(1 + D)wai = 2e,50% Wij + 2004,
(1 + D), = 2€,, Wi + 20% 4.
One can thus use this to define recursively
n n

it e la - -
{1 + D)wai} = 26,305 W;; + 260 4

n

Y

—
+ Twoia

aa

where T = D — D. Note that Tf,.j as an operator strictly increases the nilpotency
since

T =UPdg; + VP + VjﬂA;} + 0% + efrﬁf,
where USF ¢ (Nil)2, V5, VjB e (Nil)? and F,;j,F/{ locally are just matrices or

zero. Thus
n

n P Y
Pt !
T(L)ai = T(Z (U(\i)~

l<n

One can similarly define cuf.] recursively.

We will want to prove eqgs. (1)-(16), just asisdone in Harnad et al. (7], which
in turn imply the constraint equations for integrability of the connection along
super light rays. As is done there, apply (1 + D) to both sides of the equation
we are trying to prove, G = 0, and use induction on the nilpotency.
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0 . !
We have G = 0 for egs. (1)-(16), using the D-recursions. Assume G = 0 for
! < n.Then

n
—_—— ——
(1+D)G=(0+D+T)G

n ,__/,L__\ n

—— / —N—
(1+D)G+T() G) = (1+D)G.

I<n

One can use the D-recursions in exactly the same way as Harnad et al. [7] use
the D-recursions to show that this last expression is zero for G = 0 being one of
eqs. (1)-(16). To show that these equations imply the constraint equations we
apply 2 + D and a recursive argument on the nilpotency to both sides of each of
the constraint equations. We refer the reader to ref. {7, p. 619], where Harnad
et al. show, as an example, that

n "

S —w

,(2 + D)({Qais Qﬂj} - 2€nﬂW’U)‘ = r(z + ﬁ)({Qu‘ia Qﬂj} - 260/)’ I/Vlj)‘ = Os

using eqs. (1)-(16). This completes the proof of ii) = 1) and thus completes
our proof of the equivalence of the three sets of data. O

We note that i) < iii) tells us that the data of the reduced fields determines a
unique superconnection (up to gauge equivalence). For if we had two supercon-
nections corresponding to the same set of reduced fields we could then find for
each a superconnection which is gauge equivalent and which satisfies the “trans-
verse” gauge condition in a common fixed choice of super coordinates. These
two connections would then have to be equal to each other by the equivalence
of data proven above.

6. Vector bundles and SSYM fields

It is now a well established procedure to show the equivalence of N = 3
superconnections integrable along super light rays and vector bundles over the
space of super light rays which vanish on normal quadrics. The reader may refer
to Manin [15] or Schnider and Wells [19]. Recall the double fibration:

F
14 n
SN
N5|6 M4“2.

We present here the argument of Manin [15, pp. 73-74], to construct from a
connection on M*/12 which is integrable along super light rays, a vector bundle
on A6 which is trivial on normal quadrics.
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Assume the fibres of p, i.e. the super light rays of M, are connected. Let
(Ear, V) be a vector bundle with connection on M, which is integrable along
super light rays and which has zero monodromy along these fibres. Let TF /N =
ker(p.) and let Vg, 5 be the composition

Ty eyt M UEEQIFIN,

where res is the restriction to TF/N. Define £ = ker (Vg x) . Since Vg, » has
no curvature or monodromy and the fibres of p are connected, we have that
Ex = p«&Ex is a locally free sheaf of Ay-modules on N. Furthermore, this sheaf
will be trivial when restricted to normal quadrics.

Now let £4 be a vector bundle over A which is trivial over normal quadrics.
Let £F = p*(En) . Since & is trivial on the fibres of #, we have £F = Ar®4, &
for some sheaf £, which we can identify with some sheaf £3; on M. The vector
bundle £, will then, by its construction have zero monodromy along any null
geodesic. A connection on £,7 can be defined by a straightforward generalization
of the Sparling-Ward splitting outlined by Shnider and Wells [19, pp. 52-53].

Let 516 be a space of super light rays constructed for a complex conformal
spacetime M*. Assume also that M* is civilized and reflexive and initially that
M* is a Stein open set over which our vector bundle £, is trivial and which
is a supercoordinate chart for its extension M*!2. The above establishes the
following theorem:

Theorem 6.1. There is a one to one correspondence between equivalence classes of
- Solutions to the N=3 SSYM equations on of a complex conformal spacetime
M* with no monodromy on any null line |, and
- Super vector bundles over the space of super light rays N3\%, which are trivial
over normal embedded P, x P .

We may now piece together the local versions of this theorem to produce a global
version in the manner a la LeBrun [12, p. 1059]. We first cover our spacetime
with convex neighborhoods for which the theorem already holds. The theorem
will aiso be true on their overlaps.

Over the image of each of these in the space of super light rays we obtain, via
the correspondence, a super vector bundle. On an overlap we have uniqueness
up to isomorphism and thus an automorphism of the super vector bundle over
it. On the reduced level this automorphism is the identity. But the identity has
only a unique extension over our overlap. Thus we may piece together uniquely
the super vector bundles over the images to obtain a unique super vector bundle
over the entire space of super light rays which is trivial over normal quadrics.
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